TrafficWheel/trainer/STMLP_Trainer.py

393 lines
15 KiB
Python

import math
import os
import time
import copy
import torch.nn.functional as F
import torch
from torch import nn
from tqdm import tqdm
from utils.logger import get_logger
from utils.loss_function import all_metrics
from model.STMLP.STMLP import STMLP
from utils.training_stats import TrainingStats
class Trainer:
def __init__(
self,
model,
loss,
optimizer,
train_loader,
val_loader,
test_loader,
scaler,
args,
lr_scheduler=None,
):
# 设备和基本参数
self.device = args["basic"]["device"]
train_args = args["train"]
# 模型和训练相关组件
self.model = model
self.loss = loss
self.optimizer = optimizer
self.lr_scheduler = lr_scheduler
# 数据加载器
self.train_loader = train_loader
self.val_loader = val_loader
self.test_loader = test_loader
# 数据处理工具
self.scaler = scaler
self.args = train_args
# 统计信息
self.train_per_epoch = len(train_loader)
self.val_per_epoch = len(val_loader) if val_loader else 0
# 初始化路径、日志和统计
self._initialize_paths(args, train_args)
self._initialize_logger(train_args)
self._initialize_stats()
# 教师-学生蒸馏相关
if self.args["teacher_stu"]:
self.tmodel = self.loadTeacher(args)
else:
self.logger.info(
f"当前使用预训练模式,预训练后请移动教师模型到"
f"./pre-train/{args['model']['type']}/{args['data']['type']}/best_model.pth"
f"然后在config中配置train.teacher_stu模式为True开启蒸馏模式"
)
def _initialize_paths(self, args, train_args):
"""初始化模型保存路径"""
self.best_path = os.path.join(train_args["log_dir"], "best_model.pth")
self.best_test_path = os.path.join(train_args["log_dir"], "best_test_model.pth")
self.loss_figure_path = os.path.join(train_args["log_dir"], "loss.png")
self.pretrain_dir = (
f"./pre-train/{args['model']['type']}/{args['data']['type']}"
)
self.pretrain_path = os.path.join(self.pretrain_dir, "best_model.pth")
self.pretrain_best_path = os.path.join(self.pretrain_dir, "best_test_model.pth")
# 创建预训练目录
if not os.path.isdir(self.pretrain_dir) and not train_args["debug"]:
os.makedirs(self.pretrain_dir, exist_ok=True)
def _initialize_logger(self, args):
"""初始化日志记录器"""
if not os.path.isdir(args["log_dir"]) and not args["debug"]:
os.makedirs(args["log_dir"], exist_ok=True)
self.logger = get_logger(
args["log_dir"],
name=self.model.__class__.__name__,
debug=args["debug"],
)
self.logger.info(f"Experiment log path in: {args['log_dir']}")
def _initialize_stats(self):
"""初始化统计信息记录器"""
self.stats = TrainingStats(device=self.device)
def _run_epoch(self, epoch, dataloader, mode):
"""运行一个训练/验证/测试epoch"""
# self.tmodel.eval()
# 设置模型模式和是否进行优化
if mode == "train":
self.model.train()
optimizer_step = True
else:
self.model.eval()
optimizer_step = False
# 初始化变量
total_loss = 0
epoch_time = time.time()
y_pred, y_true = [], []
with torch.set_grad_enabled(optimizer_step):
with tqdm(
total=len(dataloader), desc=f"{mode.capitalize()} Epoch {epoch}"
) as pbar:
for batch_idx, (data, target) in enumerate(dataloader):
start_time = time.time()
label = target[..., : self.args["output_dim"]]
if self.args["teacher_stu"]:
# 教师-学生蒸馏模式
output, out_, _ = self.model(data)
gout, tout, sout = self.tmodel(data)
# 计算原始loss
loss1 = self.loss(output, label)
# 计算蒸馏相关loss
scl = self.loss_cls(out_, sout)
kl_loss = nn.KLDivLoss(
reduction="batchmean", log_target=True
).cuda()
gout = F.log_softmax(gout, dim=-1).cuda()
mlp_emb_ = F.log_softmax(output, dim=-1).cuda()
tkloss = kl_loss(mlp_emb_.cuda().float(), gout.cuda().float())
# 总loss
loss = loss1 + 10 * tkloss + 1 * scl
# 检查output和label的shape是否一致
if output.shape == label.shape:
print(f"✓ Test passed: output shape {output.shape} matches label shape {label.shape}")
import sys
sys.exit(0)
else:
print(f"✗ Test failed: output shape {output.shape} does not match label shape {label.shape}")
import sys
sys.exit(1)
else:
# 普通训练模式
output, out_, _ = self.model(data)
loss = self.loss(output, label)
# 检查output和label的shape是否一致
if output.shape == label.shape:
print(f"✓ Test passed: output shape {output.shape} matches label shape {label.shape}")
import sys
sys.exit(0)
else:
print(f"✗ Test failed: output shape {output.shape} does not match label shape {label.shape}")
import sys
sys.exit(1)
# 反归一化
d_output = self.scaler.inverse_transform(output)
d_label = self.scaler.inverse_transform(label)
# 反归一化的loss
d_loss = self.loss(d_output, d_label)
# 反向传播和优化(仅在训练模式)
if optimizer_step and self.optimizer is not None:
self.optimizer.zero_grad()
loss.backward()
if self.args["grad_norm"]:
torch.nn.utils.clip_grad_norm_(
self.model.parameters(), self.args["max_grad_norm"]
)
self.optimizer.step()
step_time = time.time() - start_time
self.stats.record_step_time(step_time, mode)
total_loss += d_loss.item()
# 累积预测结果
y_pred.append(d_output.detach().cpu())
y_true.append(d_label.detach().cpu())
if mode == "train" and (batch_idx + 1) % self.args["log_step"] == 0:
self.logger.info(
f"Train Epoch {epoch}: {batch_idx + 1}/{len(dataloader)} Loss: {d_loss.item():.6f}"
)
# 更新 tqdm 的进度
pbar.update(1)
pbar.set_postfix(loss=d_loss.item())
# 合并所有批次的预测结果
y_pred = torch.cat(y_pred, dim=0)
y_true = torch.cat(y_true, dim=0)
# 计算平均损失
avg_loss = total_loss / len(dataloader)
# 计算并记录指标
mae, rmse, mape = all_metrics(
y_pred, y_true, self.args["mae_thresh"], self.args["mape_thresh"]
)
self.logger.info(
f"Epoch #{epoch:02d}: {mode.capitalize():<5} MAE:{mae:5.2f} | RMSE:{rmse:5.2f} | MAPE:{mape:7.4f} | Time: {time.time() - epoch_time:.2f} s"
)
# 记录内存
self.stats.record_memory_usage()
return avg_loss
def train_epoch(self, epoch):
return self._run_epoch(epoch, self.train_loader, "train")
def val_epoch(self, epoch):
return self._run_epoch(epoch, self.val_loader or self.test_loader, "val")
def test_epoch(self, epoch):
return self._run_epoch(epoch, self.test_loader, "test")
def train(self):
"""执行完整的训练流程"""
best_model, best_test_model = None, None
best_loss, best_test_loss = float("inf"), float("inf")
not_improved_count = 0
self.stats.start_training()
self.logger.info("Training process started")
for epoch in range(1, self.args["epochs"] + 1):
train_epoch_loss = self.train_epoch(epoch)
val_epoch_loss = self.val_epoch(epoch)
test_epoch_loss = self.test_epoch(epoch)
if train_epoch_loss > 1e6:
self.logger.warning("Gradient explosion detected. Ending...")
break
if val_epoch_loss < best_loss:
best_loss = val_epoch_loss
not_improved_count = 0
best_model = copy.deepcopy(self.model.state_dict())
torch.save(best_model, self.best_path)
torch.save(best_model, self.pretrain_path)
self.logger.info("Best validation model saved!")
else:
not_improved_count += 1
if self._should_early_stop(not_improved_count):
break
if test_epoch_loss < best_test_loss:
best_test_loss = test_epoch_loss
best_test_model = copy.deepcopy(self.model.state_dict())
torch.save(best_test_model, self.best_test_path)
torch.save(best_model, self.pretrain_best_path)
if not self.args["debug"]:
torch.save(best_model, self.best_path)
torch.save(best_test_model, self.best_test_path)
self.logger.info(
f"Best models saved at {self.best_path} and {self.best_test_path}"
)
# 输出统计与参数
self.stats.end_training()
self.stats.report(self.logger)
self._log_model_params()
self._finalize_training(best_model, best_test_model)
def _should_early_stop(self, not_improved_count):
"""检查是否满足早停条件"""
if (
self.args["early_stop"]
and not_improved_count == self.args["early_stop_patience"]
):
self.logger.info(
f"Validation performance didn't improve for {self.args['early_stop_patience']} epochs. Training stops."
)
return True
return False
def _log_model_params(self):
"""输出模型可训练参数数量"""
total_params = sum( p.numel() for p in self.model.parameters() if p.requires_grad)
self.logger.info(f"Trainable params: {total_params}")
def _finalize_training(self, best_model, best_test_model):
self.model.load_state_dict(best_model)
self.logger.info("Testing on best validation model")
self.test(self.model, self.args, self.test_loader, self.scaler, self.logger)
self.model.load_state_dict(best_test_model)
self.logger.info("Testing on best test model")
self.test(self.model, self.args, self.test_loader, self.scaler, self.logger)
def loadTeacher(self, args):
model_path = (
f"./pre-train/{args['model']['type']}/{args['data']['type']}/best_model.pth"
)
try:
# 尝试加载教师模型权重
state_dict = torch.load(model_path)
self.logger.info(f"成功加载教师模型权重: {model_path}")
# 初始化并返回教师模型
args["model"]["model_type"] = "teacher"
tmodel = STMLP(args["model"])
tmodel = tmodel.to(args["device"])
tmodel.load_state_dict(state_dict, strict=False)
return tmodel
except FileNotFoundError:
# 如果找不到权重文件,记录日志并修改 args
self.logger.error(
f"未找到教师模型权重文件: {model_path}。切换到预训练模式训练老师权重。\n"
f"在预训练完成后,再次启动模型则为蒸馏模式"
)
self.args["teacher_stu"] = False
return None
def loss_cls(self, x1, x2):
temperature = 0.05
x1 = F.normalize(x1, p=2, dim=-1)
x2 = F.normalize(x2, p=2, dim=-1)
weight = F.cosine_similarity(x1, x2, dim=-1)
batch_size = x1.size()[0]
# neg score
out = torch.cat([x1, x2], dim=0)
neg = torch.exp(
torch.matmul(out, out.transpose(2, 3).contiguous()) / temperature
)
pos = torch.exp(torch.sum(x1 * x2, dim=-1) * weight / temperature)
# pos = torch.exp(torch.sum(x1 * x2, dim=-1) / temperature)
pos = torch.cat([pos, pos], dim=0).sum(dim=1)
Ng = neg.sum(dim=-1).sum(dim=1)
loss = (-torch.log(pos / (pos + Ng))).mean()
return loss
@staticmethod
def test(model, args, data_loader, scaler, logger, path=None):
"""对模型进行评估并输出性能指标"""
# 加载模型检查点(如果提供了路径)
if path:
checkpoint = torch.load(path)
model.load_state_dict(checkpoint["state_dict"])
model.to(args["basic"]["device"])
# 设置为评估模式
model.eval()
# 收集预测和真实标签
y_pred, y_true = [], []
# 不计算梯度的情况下进行预测
with torch.no_grad():
for data, target in data_loader:
label = target[..., : args["output_dim"]]
output, _, _ = model(data)
y_pred.append(output.detach().cpu())
y_true.append(label.detach().cpu())
# 反归一化
d_y_pred = scaler.inverse_transform(torch.cat(y_pred, dim=0))
d_y_true = scaler.inverse_transform(torch.cat(y_true, dim=0))
# 计算并记录每个时间步的指标
for t in range(d_y_true.shape[1]):
mae, rmse, mape = all_metrics(
d_y_pred[:, t, ...],
d_y_true[:, t, ...],
args["mae_thresh"],
args["mape_thresh"],
)
logger.info(f"Horizon {t + 1:02d}, MAE: {mae:.4f}, RMSE: {rmse:.4f}, MAPE: {mape:.4f}")
# 计算并记录平均指标
mae, rmse, mape = all_metrics(d_y_pred, d_y_true, args["mae_thresh"], args["mape_thresh"])
logger.info( f"Average Horizon, MAE: {mae:.4f}, RMSE: {rmse:.4f}, MAPE: {mape:.4f}")
@staticmethod
def _compute_sampling_threshold(global_step, k):
return k / (k + math.exp(global_step / k))