TrafficWheel/config/STEP/PEMSD4.yaml

91 lines
1.5 KiB
YAML

data:
type: 'PEMSD4'
num_nodes: 307
lag: 12
horizon: 12
val_ratio: 0.2
test_ratio: 0.2
tod: false
normalizer: std
column_wise: false
default_graph: true
add_time_in_day: true
add_day_in_week: true
steps_per_day: 288
days_per_week: 7
sample: 1
input_dim: 3
batch_size: 64
model:
type: 'STEP'
dataset_name: 'PEMS04'
input_dim: 1
output_dim: 1
num_nodes: 307
lag: 12
horizon: 12
# TSFormer参数
tsformer_args:
patch_size: 12
in_channel: 1
embed_dim: 96
num_heads: 4
mlp_ratio: 4
dropout: 0.1
num_token: 4032
mask_ratio: 0.75
encoder_depth: 4
decoder_depth: 1
mode: "forecasting" # 预测模式
# GraphWaveNet后端参数
backend_args:
num_nodes: 307
support_len: 2
dropout: 0.3
gcn_bool: true
addaptadj: true
aptinit: null
in_dim: 2
out_dim: 12
residual_channels: 32
dilation_channels: 32
skip_channels: 256
end_channels: 512
kernel_size: 2
blocks: 4
layers: 2
# 离散图学习参数
dgl_args:
dataset_name: 'PEMS04'
k: 10
input_seq_len: 12
output_seq_len: 12
train:
loss_func: mae
seed: 10
batch_size: 64
epochs: 100
lr_init: 0.002
weight_decay: 1.0e-5
lr_decay: true
lr_decay_rate: 0.5
lr_decay_step: "1,18,36,54,72"
early_stop: true
early_stop_patience: 15
grad_norm: true
max_grad_norm: 3.0
real_value: true
test:
mae_thresh: null
mape_thresh: 0.0
log:
log_step: 200
plot: false