201 lines
6.3 KiB
Python
201 lines
6.3 KiB
Python
from lib.normalization import normalize_dataset
|
|
|
|
import numpy as np
|
|
import gc
|
|
import os
|
|
import torch
|
|
import h5py
|
|
|
|
|
|
def get_dataloader(args, normalizer='std', single=True):
|
|
"""STEP模型的数据加载器
|
|
|
|
Args:
|
|
args: 配置参数
|
|
normalizer: 标准化方法
|
|
single: 是否为单步预测
|
|
|
|
Returns:
|
|
train_dataloader, val_dataloader, test_dataloader, scaler
|
|
"""
|
|
data = load_st_dataset(args['type'], args['sample']) # 加载数据
|
|
L, N, F = data.shape # 数据形状
|
|
|
|
# Step 1: data -> x,y
|
|
x = add_window_x(data, args['lag'], args['horizon'], single)
|
|
y = add_window_y(data, args['lag'], args['horizon'], single)
|
|
|
|
del data
|
|
gc.collect()
|
|
|
|
# Step 2: time_in_day, day_in_week -> day, week
|
|
time_in_day = [i % args['steps_per_day'] / args['steps_per_day'] for i in range(L)]
|
|
time_in_day = np.tile(np.array(time_in_day), [1, N, 1]).transpose((2, 1, 0))
|
|
day_in_week = [(i // args['steps_per_day']) % args['days_per_week'] for i in range(L)]
|
|
day_in_week = np.tile(np.array(day_in_week), [1, N, 1]).transpose((2, 1, 0))
|
|
|
|
x_day = add_window_x(time_in_day, args['lag'], args['horizon'], single)
|
|
x_week = add_window_x(day_in_week, args['lag'], args['horizon'], single)
|
|
|
|
# Step 3 day, week, x, y --> x, y
|
|
x = np.concatenate([x, x_day, x_week], axis=-1)
|
|
|
|
del x_day, x_week
|
|
gc.collect()
|
|
|
|
# Step 4 x,y --> x_train, x_val, x_test, y_train, y_val, y_test
|
|
if args['test_ratio'] > 1:
|
|
x_train, x_val, x_test = split_data_by_days(x, args['val_ratio'], args['test_ratio'])
|
|
else:
|
|
x_train, x_val, x_test = split_data_by_ratio(x, args['val_ratio'], args['test_ratio'])
|
|
|
|
del x
|
|
gc.collect()
|
|
|
|
# Normalization
|
|
scaler = normalize_dataset(x_train[..., :args['input_dim']], normalizer, args['column_wise'])
|
|
x_train[..., :args['input_dim']] = scaler.transform(x_train[..., :args['input_dim']])
|
|
x_val[..., :args['input_dim']] = scaler.transform(x_val[..., :args['input_dim']])
|
|
x_test[..., :args['input_dim']] = scaler.transform(x_test[..., :args['input_dim']])
|
|
|
|
y_day = add_window_y(time_in_day, args['lag'], args['horizon'], single)
|
|
y_week = add_window_y(day_in_week, args['lag'], args['horizon'], single)
|
|
|
|
del time_in_day, day_in_week
|
|
gc.collect()
|
|
|
|
y = np.concatenate([y, y_day, y_week], axis=-1)
|
|
|
|
del y_day, y_week
|
|
gc.collect()
|
|
|
|
# Split Y
|
|
if args['test_ratio'] > 1:
|
|
y_train, y_val, y_test = split_data_by_days(y, args['val_ratio'], args['test_ratio'])
|
|
else:
|
|
y_train, y_val, y_test = split_data_by_ratio(y, args['val_ratio'], args['test_ratio'])
|
|
|
|
del y
|
|
gc.collect()
|
|
|
|
# Step 5: x_train y_train x_val y_val x_test y_test --> train val test
|
|
train_dataloader = data_loader(x_train, y_train, args['batch_size'], shuffle=True, drop_last=True)
|
|
|
|
del x_train, y_train
|
|
gc.collect()
|
|
|
|
val_dataloader = data_loader(x_val, y_val, args['batch_size'], shuffle=False, drop_last=True)
|
|
|
|
del x_val, y_val
|
|
gc.collect()
|
|
|
|
test_dataloader = data_loader(x_test, y_test, args['batch_size'], shuffle=False, drop_last=False)
|
|
|
|
del x_test, y_test
|
|
gc.collect()
|
|
|
|
return train_dataloader, val_dataloader, test_dataloader, scaler
|
|
|
|
|
|
def load_st_dataset(dataset, sample):
|
|
# output L, N, F
|
|
match dataset:
|
|
case 'PEMSD3':
|
|
data_path = os.path.join('./data/PEMS03/PEMS03.npz')
|
|
data = np.load(data_path)['data'] # (L, N, F)
|
|
case 'PEMSD4':
|
|
data_path = os.path.join('./data/PEMS04/PEMS04.npz')
|
|
data = np.load(data_path)['data'] # (L, N, F)
|
|
case 'PEMSD7':
|
|
data_path = os.path.join('./data/PEMS07/PEMS07.npz')
|
|
data = np.load(data_path)['data'] # (L, N, F)
|
|
case 'PEMSD8':
|
|
data_path = os.path.join('./data/PEMS08/PEMS08.npz')
|
|
data = np.load(data_path)['data'] # (L, N, F)
|
|
case 'METR-LA':
|
|
data_path = os.path.join('./data/METR-LA/METR-LA.npz')
|
|
data = np.load(data_path)['data'] # (L, N, F)
|
|
case 'METR-BAY':
|
|
data_path = os.path.join('./data/METR-BAY/METR-BAY.npz')
|
|
data = np.load(data_path)['data'] # (L, N, F)
|
|
case _:
|
|
raise ValueError(f"Unknown dataset: {dataset}")
|
|
|
|
if sample:
|
|
data = data[:sample]
|
|
|
|
return data
|
|
|
|
|
|
def add_window_x(data, lag, horizon, single):
|
|
"""
|
|
Add window to data for x
|
|
"""
|
|
L, N, F = data.shape
|
|
if single:
|
|
x = np.zeros((L - lag - horizon + 1, lag, N, F))
|
|
for i in range(L - lag - horizon + 1):
|
|
x[i] = data[i:i + lag]
|
|
else:
|
|
x = np.zeros((L - lag - horizon + 1, lag, N, F))
|
|
for i in range(L - lag - horizon + 1):
|
|
x[i] = data[i:i + lag]
|
|
return x
|
|
|
|
|
|
def add_window_y(data, lag, horizon, single):
|
|
"""
|
|
Add window to data for y
|
|
"""
|
|
L, N, F = data.shape
|
|
if single:
|
|
y = np.zeros((L - lag - horizon + 1, horizon, N, F))
|
|
for i in range(L - lag - horizon + 1):
|
|
y[i] = data[i + lag:i + lag + horizon]
|
|
else:
|
|
y = np.zeros((L - lag - horizon + 1, horizon, N, F))
|
|
for i in range(L - lag - horizon + 1):
|
|
y[i] = data[i + lag:i + lag + horizon]
|
|
return y
|
|
|
|
|
|
def split_data_by_ratio(data, val_ratio, test_ratio):
|
|
"""
|
|
Split data by ratio
|
|
"""
|
|
L = data.shape[0]
|
|
val_len = int(L * val_ratio)
|
|
test_len = int(L * test_ratio)
|
|
train_len = L - val_len - test_len
|
|
|
|
train_data = data[:train_len]
|
|
val_data = data[train_len:train_len + val_len]
|
|
test_data = data[train_len + val_len:]
|
|
|
|
return train_data, val_data, test_data
|
|
|
|
|
|
def split_data_by_days(data, val_days, test_days):
|
|
"""
|
|
Split data by days
|
|
"""
|
|
L = data.shape[0]
|
|
val_len = val_days * 288 # 288 time steps per day
|
|
test_len = test_days * 288
|
|
train_len = L - val_len - test_len
|
|
|
|
train_data = data[:train_len]
|
|
val_data = data[train_len:train_len + val_len]
|
|
test_data = data[train_len + val_len:]
|
|
|
|
return train_data, val_data, test_data
|
|
|
|
|
|
def data_loader(x, y, batch_size, shuffle=True, drop_last=True):
|
|
"""
|
|
Create data loader
|
|
"""
|
|
dataset = torch.utils.data.TensorDataset(torch.FloatTensor(x), torch.FloatTensor(y))
|
|
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last)
|
|
return dataloader
|