TrafficWheel/dataloader/STEPdataloader.py

201 lines
6.3 KiB
Python

from lib.normalization import normalize_dataset
import numpy as np
import gc
import os
import torch
import h5py
def get_dataloader(args, normalizer='std', single=True):
"""STEP模型的数据加载器
Args:
args: 配置参数
normalizer: 标准化方法
single: 是否为单步预测
Returns:
train_dataloader, val_dataloader, test_dataloader, scaler
"""
data = load_st_dataset(args['type'], args['sample']) # 加载数据
L, N, F = data.shape # 数据形状
# Step 1: data -> x,y
x = add_window_x(data, args['lag'], args['horizon'], single)
y = add_window_y(data, args['lag'], args['horizon'], single)
del data
gc.collect()
# Step 2: time_in_day, day_in_week -> day, week
time_in_day = [i % args['steps_per_day'] / args['steps_per_day'] for i in range(L)]
time_in_day = np.tile(np.array(time_in_day), [1, N, 1]).transpose((2, 1, 0))
day_in_week = [(i // args['steps_per_day']) % args['days_per_week'] for i in range(L)]
day_in_week = np.tile(np.array(day_in_week), [1, N, 1]).transpose((2, 1, 0))
x_day = add_window_x(time_in_day, args['lag'], args['horizon'], single)
x_week = add_window_x(day_in_week, args['lag'], args['horizon'], single)
# Step 3 day, week, x, y --> x, y
x = np.concatenate([x, x_day, x_week], axis=-1)
del x_day, x_week
gc.collect()
# Step 4 x,y --> x_train, x_val, x_test, y_train, y_val, y_test
if args['test_ratio'] > 1:
x_train, x_val, x_test = split_data_by_days(x, args['val_ratio'], args['test_ratio'])
else:
x_train, x_val, x_test = split_data_by_ratio(x, args['val_ratio'], args['test_ratio'])
del x
gc.collect()
# Normalization
scaler = normalize_dataset(x_train[..., :args['input_dim']], normalizer, args['column_wise'])
x_train[..., :args['input_dim']] = scaler.transform(x_train[..., :args['input_dim']])
x_val[..., :args['input_dim']] = scaler.transform(x_val[..., :args['input_dim']])
x_test[..., :args['input_dim']] = scaler.transform(x_test[..., :args['input_dim']])
y_day = add_window_y(time_in_day, args['lag'], args['horizon'], single)
y_week = add_window_y(day_in_week, args['lag'], args['horizon'], single)
del time_in_day, day_in_week
gc.collect()
y = np.concatenate([y, y_day, y_week], axis=-1)
del y_day, y_week
gc.collect()
# Split Y
if args['test_ratio'] > 1:
y_train, y_val, y_test = split_data_by_days(y, args['val_ratio'], args['test_ratio'])
else:
y_train, y_val, y_test = split_data_by_ratio(y, args['val_ratio'], args['test_ratio'])
del y
gc.collect()
# Step 5: x_train y_train x_val y_val x_test y_test --> train val test
train_dataloader = data_loader(x_train, y_train, args['batch_size'], shuffle=True, drop_last=True)
del x_train, y_train
gc.collect()
val_dataloader = data_loader(x_val, y_val, args['batch_size'], shuffle=False, drop_last=True)
del x_val, y_val
gc.collect()
test_dataloader = data_loader(x_test, y_test, args['batch_size'], shuffle=False, drop_last=False)
del x_test, y_test
gc.collect()
return train_dataloader, val_dataloader, test_dataloader, scaler
def load_st_dataset(dataset, sample):
# output L, N, F
match dataset:
case 'PEMSD3':
data_path = os.path.join('./data/PEMS03/PEMS03.npz')
data = np.load(data_path)['data'] # (L, N, F)
case 'PEMSD4':
data_path = os.path.join('./data/PEMS04/PEMS04.npz')
data = np.load(data_path)['data'] # (L, N, F)
case 'PEMSD7':
data_path = os.path.join('./data/PEMS07/PEMS07.npz')
data = np.load(data_path)['data'] # (L, N, F)
case 'PEMSD8':
data_path = os.path.join('./data/PEMS08/PEMS08.npz')
data = np.load(data_path)['data'] # (L, N, F)
case 'METR-LA':
data_path = os.path.join('./data/METR-LA/METR-LA.npz')
data = np.load(data_path)['data'] # (L, N, F)
case 'METR-BAY':
data_path = os.path.join('./data/METR-BAY/METR-BAY.npz')
data = np.load(data_path)['data'] # (L, N, F)
case _:
raise ValueError(f"Unknown dataset: {dataset}")
if sample:
data = data[:sample]
return data
def add_window_x(data, lag, horizon, single):
"""
Add window to data for x
"""
L, N, F = data.shape
if single:
x = np.zeros((L - lag - horizon + 1, lag, N, F))
for i in range(L - lag - horizon + 1):
x[i] = data[i:i + lag]
else:
x = np.zeros((L - lag - horizon + 1, lag, N, F))
for i in range(L - lag - horizon + 1):
x[i] = data[i:i + lag]
return x
def add_window_y(data, lag, horizon, single):
"""
Add window to data for y
"""
L, N, F = data.shape
if single:
y = np.zeros((L - lag - horizon + 1, horizon, N, F))
for i in range(L - lag - horizon + 1):
y[i] = data[i + lag:i + lag + horizon]
else:
y = np.zeros((L - lag - horizon + 1, horizon, N, F))
for i in range(L - lag - horizon + 1):
y[i] = data[i + lag:i + lag + horizon]
return y
def split_data_by_ratio(data, val_ratio, test_ratio):
"""
Split data by ratio
"""
L = data.shape[0]
val_len = int(L * val_ratio)
test_len = int(L * test_ratio)
train_len = L - val_len - test_len
train_data = data[:train_len]
val_data = data[train_len:train_len + val_len]
test_data = data[train_len + val_len:]
return train_data, val_data, test_data
def split_data_by_days(data, val_days, test_days):
"""
Split data by days
"""
L = data.shape[0]
val_len = val_days * 288 # 288 time steps per day
test_len = test_days * 288
train_len = L - val_len - test_len
train_data = data[:train_len]
val_data = data[train_len:train_len + val_len]
test_data = data[train_len + val_len:]
return train_data, val_data, test_data
def data_loader(x, y, batch_size, shuffle=True, drop_last=True):
"""
Create data loader
"""
dataset = torch.utils.data.TensorDataset(torch.FloatTensor(x), torch.FloatTensor(y))
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last)
return dataloader