100 lines
3.3 KiB
Python
Executable File
100 lines
3.3 KiB
Python
Executable File
import torch
|
|
import torch.nn as nn
|
|
from model.model_selector import model_selector
|
|
from lib.loss_function import masked_mae_loss
|
|
import random
|
|
import numpy as np
|
|
from datetime import datetime
|
|
import os
|
|
import yaml
|
|
|
|
def init_model(args):
|
|
device = args["device"]
|
|
model = model_selector(args).to(device)
|
|
for p in model.parameters():
|
|
if p.dim() > 1:
|
|
nn.init.xavier_uniform_(p)
|
|
else:
|
|
nn.init.uniform_(p)
|
|
total_params = sum(p.numel() for p in model.parameters())
|
|
print(f"模型参数量: {total_params} ")
|
|
return model
|
|
|
|
def init_optimizer(model, args):
|
|
|
|
optimizer = torch.optim.Adam(
|
|
params=model.parameters(),
|
|
lr=args['lr_init'],
|
|
eps=1.0e-8,
|
|
weight_decay=args['weight_decay'],
|
|
amsgrad=False
|
|
)
|
|
|
|
lr_scheduler = None
|
|
if args['lr_decay']:
|
|
lr_decay_steps = [int(step) for step in args['lr_decay_step'].split(',')]
|
|
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
|
optimizer=optimizer,
|
|
milestones=lr_decay_steps,
|
|
gamma=args['lr_decay_rate']
|
|
)
|
|
|
|
return optimizer, lr_scheduler
|
|
|
|
def init_seed(seed):
|
|
"""初始化种子,保证结果可复现"""
|
|
torch.cuda.cudnn_enabled = False
|
|
torch.backends.cudnn.deterministic = True
|
|
random.seed(seed)
|
|
np.random.seed(seed)
|
|
torch.manual_seed(seed)
|
|
torch.cuda.manual_seed(seed)
|
|
|
|
def init_device(args):
|
|
device_name = args['basic']['device']
|
|
if 'model' not in args or not isinstance(args['model'], dict):
|
|
args['model'] = {} # Ensure args['model'] is a dictionary
|
|
match device_name:
|
|
case 'mps':
|
|
if hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
|
|
args['device'] = 'mps'
|
|
else:
|
|
args['device'] = 'cpu'
|
|
case device if device.startswith('cuda'):
|
|
if torch.cuda.is_available():
|
|
torch.cuda.set_device(int(device.split(':')[1]))
|
|
args['device'] = device
|
|
else:
|
|
args['device'] = 'cpu'
|
|
case _:
|
|
args['device'] = 'cpu'
|
|
args['model']['device'] = args['device']
|
|
return args
|
|
|
|
def init_loss(args, scaler):
|
|
device = args['basic']['device']
|
|
args = args['train']
|
|
match args['loss_func']:
|
|
case 'mask_mae':
|
|
return masked_mae_loss(scaler, mask_value=None)
|
|
case 'mae':
|
|
return torch.nn.L1Loss().to(device)
|
|
case 'mse':
|
|
return torch.nn.MSELoss().to(device)
|
|
case 'Huber':
|
|
return torch.nn.HuberLoss().to(device)
|
|
case _:
|
|
raise ValueError(f"Unsupported loss function: {args['loss_func']}")
|
|
|
|
def create_logs(args):
|
|
current_time = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
|
|
current_dir = os.path.dirname(os.path.realpath(__file__))
|
|
|
|
args['train']['log_dir'] = os.path.join(current_dir, 'experiments', args['basic']['dataset'], current_time)
|
|
config_filename = f"{args['basic']['dataset']}.yaml"
|
|
os.makedirs(args['train']['log_dir'], exist_ok=True)
|
|
config_content = yaml.safe_dump(args, default_flow_style=False)
|
|
destination_path = os.path.join(args['train']['log_dir'], config_filename)
|
|
# 将 args 保存为 YAML 文件
|
|
with open(destination_path, 'w') as f:
|
|
f.write(config_content) |