210 lines
7.1 KiB
Python
Executable File
210 lines
7.1 KiB
Python
Executable File
import torch
|
||
import torch.nn as nn
|
||
import torch.nn.functional as F
|
||
|
||
"""
|
||
完整的 EXP 模型,基于 Greenshields 模型反推密度,并结合 LWR 守恒方程物理引导模块,支持仅流量数据输入。
|
||
"""
|
||
|
||
class FlowToDensity(nn.Module):
|
||
"""
|
||
根据 Greenshields 基本图反解密度:
|
||
q = v_f * k * (1 - k / k_j)
|
||
通过求解二次方程获得 k。
|
||
"""
|
||
def __init__(self, v_f=15.0, k_j=1.0):
|
||
super().__init__()
|
||
self.v_f = nn.Parameter(torch.tensor(v_f), requires_grad=False)
|
||
self.k_j = nn.Parameter(torch.tensor(k_j), requires_grad=False)
|
||
|
||
def forward(self, q): # q: (B, T, N)
|
||
a = -self.v_f / self.k_j
|
||
b = self.v_f
|
||
c = -q
|
||
delta = b**2 - 4 * a * c
|
||
delta = torch.clamp(delta, min=1e-6)
|
||
sqrt_delta = torch.sqrt(delta)
|
||
k1 = (-b + sqrt_delta) / (2 * a)
|
||
k2 = (-b - sqrt_delta) / (2 * a)
|
||
k = torch.where((k1 > 0) & (k1 < self.k_j), k1, k2)
|
||
return k
|
||
|
||
class FundamentalDiagram(nn.Module):
|
||
"""
|
||
Greenshields 基本图:根据密度计算速度与流量。
|
||
"""
|
||
def __init__(self, v_free=30.0, k_jam=200.0):
|
||
super().__init__()
|
||
self.v_free = nn.Parameter(torch.tensor(v_free), requires_grad=True)
|
||
self.k_jam = nn.Parameter(torch.tensor(k_jam), requires_grad=True)
|
||
|
||
def forward(self, density):
|
||
speed = self.v_free * (1 - density / self.k_jam)
|
||
flux = density * speed
|
||
return speed, flux
|
||
|
||
class ConservationLayer(nn.Module):
|
||
"""
|
||
基于 LWR 方程离散化的守恒层。
|
||
"""
|
||
def __init__(self, dt=1.0, dx=1.0):
|
||
super().__init__()
|
||
self.dt = dt
|
||
self.dx = dx
|
||
|
||
def forward(self, density, flux, adj):
|
||
# density, flux: (B, N); adj: (N, N)
|
||
# outflow: 流量从节点流出到邻居
|
||
outflow = flux @ adj
|
||
# inflow: 邻居流量流入该节点
|
||
inflow = flux @ adj.T
|
||
# 更新密度
|
||
delta = (inflow - outflow) * (self.dt / self.dx)
|
||
d_next = density + delta
|
||
return d_next.clamp(min=0.0)
|
||
|
||
class DynamicGraphConstructor(nn.Module):
|
||
def __init__(self, node_num, embed_dim):
|
||
super().__init__()
|
||
self.nodevec1 = nn.Parameter(torch.randn(node_num, embed_dim))
|
||
self.nodevec2 = nn.Parameter(torch.randn(node_num, embed_dim))
|
||
|
||
def forward(self):
|
||
adj = torch.matmul(self.nodevec1, self.nodevec2.T)
|
||
adj = F.relu(adj)
|
||
adj = F.softmax(adj, dim=-1)
|
||
return adj
|
||
|
||
class GraphConvBlock(nn.Module):
|
||
def __init__(self, input_dim, output_dim):
|
||
super().__init__()
|
||
self.theta = nn.Linear(input_dim, output_dim)
|
||
self.residual = (input_dim == output_dim)
|
||
if not self.residual:
|
||
self.res_proj = nn.Linear(input_dim, output_dim)
|
||
|
||
def forward(self, x, adj):
|
||
res = x
|
||
x = torch.matmul(adj, x)
|
||
x = self.theta(x)
|
||
x = x + (res if self.residual else self.res_proj(res))
|
||
return F.relu(x)
|
||
|
||
class MANBA_Block(nn.Module):
|
||
def __init__(self, input_dim, hidden_dim):
|
||
super().__init__()
|
||
self.attn = nn.MultiheadAttention(embed_dim=input_dim, num_heads=4, batch_first=True)
|
||
self.ffn = nn.Sequential(
|
||
nn.Linear(input_dim, hidden_dim),
|
||
nn.ReLU(),
|
||
nn.Linear(hidden_dim, input_dim)
|
||
)
|
||
self.norm1 = nn.LayerNorm(input_dim)
|
||
self.norm2 = nn.LayerNorm(input_dim)
|
||
|
||
def forward(self, x):
|
||
res = x
|
||
x_attn, _ = self.attn(x, x, x)
|
||
x = self.norm1(res + x_attn)
|
||
res2 = x
|
||
x_ffn = self.ffn(x)
|
||
x = self.norm2(res2 + x_ffn)
|
||
return x
|
||
|
||
class SandwichBlock(nn.Module):
|
||
def __init__(self, num_nodes, embed_dim, hidden_dim):
|
||
super().__init__()
|
||
self.manba1 = MANBA_Block(hidden_dim, hidden_dim * 2)
|
||
self.graph_constructor = DynamicGraphConstructor(num_nodes, embed_dim)
|
||
self.gc = GraphConvBlock(hidden_dim, hidden_dim)
|
||
self.manba2 = MANBA_Block(hidden_dim, hidden_dim * 2)
|
||
self.fundamental = FundamentalDiagram()
|
||
self.conserve = ConservationLayer()
|
||
|
||
def forward(self, h, density):
|
||
# h: (B, N, D),density: (B, N)
|
||
h1 = self.manba1(h)
|
||
adj = self.graph_constructor()
|
||
_, flux = self.fundamental(density)
|
||
density_next = self.conserve(density, flux, adj)
|
||
h1_updated = h1 + density_next.unsqueeze(-1)
|
||
h2 = self.gc(h1_updated, adj)
|
||
h3 = self.manba2(h2)
|
||
return h3, density_next
|
||
|
||
class MLP(nn.Module):
|
||
def __init__(self, in_dim, hidden_dims, out_dim, activation=nn.ReLU):
|
||
super().__init__()
|
||
dims = [in_dim] + hidden_dims + [out_dim]
|
||
layers = []
|
||
for i in range(len(dims) - 2):
|
||
layers += [nn.Linear(dims[i], dims[i+1]), activation()]
|
||
layers += [nn.Linear(dims[-2], dims[-1])]
|
||
self.net = nn.Sequential(*layers)
|
||
|
||
def forward(self, x):
|
||
return self.net(x)
|
||
|
||
class EXP(nn.Module):
|
||
def __init__(self, args):
|
||
super().__init__()
|
||
self.horizon = args['horizon']
|
||
self.output_dim = args['output_dim']
|
||
self.seq_len = args.get('in_len', 12)
|
||
self.hidden_dim = args.get('hidden_dim', 64)
|
||
self.num_nodes = args['num_nodes']
|
||
self.embed_dim = args.get('embed_dim', 16)
|
||
self.time_slots = args.get('time_slots', 24 * 60 // args.get('time_slot', 5))
|
||
|
||
self.flow_to_density = FlowToDensity(
|
||
v_f=args.get('v_f', 15.0),
|
||
k_j=args.get('k_j', 1.0)
|
||
)
|
||
self.time_embedding = nn.Embedding(self.time_slots, self.hidden_dim)
|
||
self.day_embedding = nn.Embedding(7, self.hidden_dim)
|
||
self.input_proj = MLP(
|
||
in_dim=self.seq_len,
|
||
hidden_dims=[self.hidden_dim],
|
||
out_dim=self.hidden_dim
|
||
)
|
||
self.sandwich1 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim)
|
||
self.sandwich2 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim)
|
||
self.out_proj = MLP(
|
||
in_dim=self.hidden_dim,
|
||
hidden_dims=[2 * self.hidden_dim],
|
||
out_dim=self.horizon * self.output_dim
|
||
)
|
||
|
||
def forward(self, x):
|
||
"""
|
||
x: (B, T, N, 3)
|
||
x[...,0]=flow, x[...,1]=time_in_day, x[...,2]=day_in_week
|
||
"""
|
||
x_flow = x[..., 0]
|
||
x_time = x[..., 1]
|
||
x_day = x[..., 2]
|
||
|
||
B, T, N = x_flow.shape
|
||
assert T == self.seq_len
|
||
|
||
x_density = self.flow_to_density(x_flow) # (B, T, N)
|
||
dens0 = x_density[:, -1, :] # (B, N)
|
||
|
||
x_flat = x_flow.permute(0, 2, 1).reshape(B * N, T)
|
||
h0 = self.input_proj(x_flat).view(B, N, self.hidden_dim)
|
||
|
||
t_idx = (x_time[:, -1] * (self.time_slots - 1)).long()
|
||
d_idx = x_day[:, -1].long()
|
||
time_emb = self.time_embedding(t_idx)
|
||
day_emb = self.day_embedding(d_idx)
|
||
h0 = h0 + time_emb + day_emb
|
||
|
||
h1, dens1 = self.sandwich1(h0, dens0)
|
||
h1 = h1 + h0
|
||
h2, dens2 = self.sandwich2(h1, dens1)
|
||
|
||
out = self.out_proj(h2)
|
||
out = out.view(B, N, self.horizon, self.output_dim)
|
||
out = out.permute(0, 2, 1, 3)
|
||
return out
|