TrafficWheel/utils/dtw.py

259 lines
7.4 KiB
Python
Executable File

__author__ = "Brian Iwana"
import numpy as np
import math
import sys
RETURN_VALUE = 0
RETURN_PATH = 1
RETURN_ALL = -1
# Core DTW
def _traceback(DTW, slope_constraint):
i, j = np.array(DTW.shape) - 1
p, q = [i - 1], [j - 1]
if slope_constraint == "asymmetric":
while i > 1:
tb = np.argmin((DTW[i - 1, j], DTW[i - 1, j - 1], DTW[i - 1, j - 2]))
if tb == 0:
i = i - 1
elif tb == 1:
i = i - 1
j = j - 1
elif tb == 2:
i = i - 1
j = j - 2
p.insert(0, i - 1)
q.insert(0, j - 1)
elif slope_constraint == "symmetric":
while i > 1 or j > 1:
tb = np.argmin((DTW[i - 1, j - 1], DTW[i - 1, j], DTW[i, j - 1]))
if tb == 0:
i = i - 1
j = j - 1
elif tb == 1:
i = i - 1
elif tb == 2:
j = j - 1
p.insert(0, i - 1)
q.insert(0, j - 1)
else:
sys.exit("Unknown slope constraint %s" % slope_constraint)
return (np.array(p), np.array(q))
def dtw(
prototype,
sample,
return_flag=RETURN_VALUE,
slope_constraint="asymmetric",
window=None,
):
"""Computes the DTW of two sequences.
:param prototype: np array [0..b]
:param sample: np array [0..t]
:param extended: bool
"""
p = prototype.shape[0]
assert p != 0, "Prototype empty!"
s = sample.shape[0]
assert s != 0, "Sample empty!"
if window is None:
window = s
cost = np.full((p, s), np.inf)
for i in range(p):
start = max(0, i - window)
end = min(s, i + window) + 1
cost[i, start:end] = np.linalg.norm(sample[start:end] - prototype[i], axis=1)
DTW = _cummulative_matrix(cost, slope_constraint, window)
if return_flag == RETURN_ALL:
return DTW[-1, -1], cost, DTW[1:, 1:], _traceback(DTW, slope_constraint)
elif return_flag == RETURN_PATH:
return _traceback(DTW, slope_constraint)
else:
return DTW[-1, -1]
def _cummulative_matrix(cost, slope_constraint, window):
p = cost.shape[0]
s = cost.shape[1]
# Note: DTW is one larger than cost and the original patterns
DTW = np.full((p + 1, s + 1), np.inf)
DTW[0, 0] = 0.0
if slope_constraint == "asymmetric":
for i in range(1, p + 1):
if i <= window + 1:
DTW[i, 1] = cost[i - 1, 0] + min(DTW[i - 1, 0], DTW[i - 1, 1])
for j in range(max(2, i - window), min(s, i + window) + 1):
DTW[i, j] = cost[i - 1, j - 1] + min(
DTW[i - 1, j - 2], DTW[i - 1, j - 1], DTW[i - 1, j]
)
elif slope_constraint == "symmetric":
for i in range(1, p + 1):
for j in range(max(1, i - window), min(s, i + window) + 1):
DTW[i, j] = cost[i - 1, j - 1] + min(
DTW[i - 1, j - 1], DTW[i, j - 1], DTW[i - 1, j]
)
else:
sys.exit("Unknown slope constraint %s" % slope_constraint)
return DTW
def shape_dtw(
prototype,
sample,
return_flag=RETURN_VALUE,
slope_constraint="asymmetric",
window=None,
descr_ratio=0.05,
):
"""Computes the shapeDTW of two sequences.
:param prototype: np array [0..b]
:param sample: np array [0..t]
:param extended: bool
"""
# shapeDTW
# https://www.sciencedirect.com/science/article/pii/S0031320317303710
p = prototype.shape[0]
assert p != 0, "Prototype empty!"
s = sample.shape[0]
assert s != 0, "Sample empty!"
if window is None:
window = s
p_feature_len = np.clip(np.round(p * descr_ratio), 5, 100).astype(int)
s_feature_len = np.clip(np.round(s * descr_ratio), 5, 100).astype(int)
# padding
p_pad_front = (np.ceil(p_feature_len / 2.0)).astype(int)
p_pad_back = (np.floor(p_feature_len / 2.0)).astype(int)
s_pad_front = (np.ceil(s_feature_len / 2.0)).astype(int)
s_pad_back = (np.floor(s_feature_len / 2.0)).astype(int)
prototype_pad = np.pad(prototype, ((p_pad_front, p_pad_back), (0, 0)), mode="edge")
sample_pad = np.pad(sample, ((s_pad_front, s_pad_back), (0, 0)), mode="edge")
p_p = prototype_pad.shape[0]
s_p = sample_pad.shape[0]
cost = np.full((p, s), np.inf)
for i in range(p):
for j in range(max(0, i - window), min(s, i + window)):
cost[i, j] = np.linalg.norm(
sample_pad[j : j + s_feature_len] - prototype_pad[i : i + p_feature_len]
)
DTW = _cummulative_matrix(cost, slope_constraint=slope_constraint, window=window)
if return_flag == RETURN_ALL:
return DTW[-1, -1], cost, DTW[1:, 1:], _traceback(DTW, slope_constraint)
elif return_flag == RETURN_PATH:
return _traceback(DTW, slope_constraint)
else:
return DTW[-1, -1]
# Draw helpers
def draw_graph2d(cost, DTW, path, prototype, sample):
import matplotlib.pyplot as plt
plt.figure(figsize=(12, 8))
# plt.subplots_adjust(left=.02, right=.98, bottom=.001, top=.96, wspace=.05, hspace=.01)
# cost
plt.subplot(2, 3, 1)
plt.imshow(cost.T, cmap=plt.cm.gray, interpolation="none", origin="lower")
plt.plot(path[0], path[1], "y")
plt.xlim((-0.5, cost.shape[0] - 0.5))
plt.ylim((-0.5, cost.shape[0] - 0.5))
# dtw
plt.subplot(2, 3, 2)
plt.imshow(DTW.T, cmap=plt.cm.gray, interpolation="none", origin="lower")
plt.plot(path[0] + 1, path[1] + 1, "y")
plt.xlim((-0.5, DTW.shape[0] - 0.5))
plt.ylim((-0.5, DTW.shape[0] - 0.5))
# prototype
plt.subplot(2, 3, 4)
plt.plot(prototype[:, 0], prototype[:, 1], "b-o")
# connection
plt.subplot(2, 3, 5)
for i in range(0, path[0].shape[0]):
plt.plot(
[prototype[path[0][i], 0], sample[path[1][i], 0]],
[prototype[path[0][i], 1], sample[path[1][i], 1]],
"y-",
)
plt.plot(sample[:, 0], sample[:, 1], "g-o")
plt.plot(prototype[:, 0], prototype[:, 1], "b-o")
# sample
plt.subplot(2, 3, 6)
plt.plot(sample[:, 0], sample[:, 1], "g-o")
plt.tight_layout()
plt.show()
def draw_graph1d(cost, DTW, path, prototype, sample):
import matplotlib.pyplot as plt
plt.figure(figsize=(12, 8))
# plt.subplots_adjust(left=.02, right=.98, bottom=.001, top=.96, wspace=.05, hspace=.01)
p_steps = np.arange(prototype.shape[0])
s_steps = np.arange(sample.shape[0])
# cost
plt.subplot(2, 3, 1)
plt.imshow(cost.T, cmap=plt.cm.gray, interpolation="none", origin="lower")
plt.plot(path[0], path[1], "y")
plt.xlim((-0.5, cost.shape[0] - 0.5))
plt.ylim((-0.5, cost.shape[0] - 0.5))
# dtw
plt.subplot(2, 3, 2)
plt.imshow(DTW.T, cmap=plt.cm.gray, interpolation="none", origin="lower")
plt.plot(path[0] + 1, path[1] + 1, "y")
plt.xlim((-0.5, DTW.shape[0] - 0.5))
plt.ylim((-0.5, DTW.shape[0] - 0.5))
# prototype
plt.subplot(2, 3, 4)
plt.plot(p_steps, prototype[:, 0], "b-o")
# connection
plt.subplot(2, 3, 5)
for i in range(0, path[0].shape[0]):
plt.plot(
[path[0][i], path[1][i]],
[prototype[path[0][i], 0], sample[path[1][i], 0]],
"y-",
)
plt.plot(p_steps, sample[:, 0], "g-o")
plt.plot(s_steps, prototype[:, 0], "b-o")
# sample
plt.subplot(2, 3, 6)
plt.plot(s_steps, sample[:, 0], "g-o")
plt.tight_layout()
plt.show()