204 lines
6.5 KiB
Python
Executable File
204 lines
6.5 KiB
Python
Executable File
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
|
|
class DynamicTanh(nn.Module):
|
|
"""
|
|
Dynamic tanh activation with learnable scaling (alpha) and affine transformation (weight, bias).
|
|
"""
|
|
|
|
def __init__(self, normalized_shape, channels_last=True, alpha_init_value=0.5):
|
|
super().__init__()
|
|
self.normalized_shape = normalized_shape
|
|
self.alpha_init_value = alpha_init_value
|
|
self.channels_last = channels_last
|
|
|
|
# learnable scale for tanh
|
|
self.alpha = nn.Parameter(torch.full((1,), alpha_init_value))
|
|
# affine parameters
|
|
self.weight = nn.Parameter(torch.ones(normalized_shape))
|
|
self.bias = nn.Parameter(torch.zeros(normalized_shape))
|
|
|
|
def forward(self, x):
|
|
# scaled tanh
|
|
x = torch.tanh(self.alpha * x)
|
|
# affine transform
|
|
if self.channels_last:
|
|
x = x * self.weight + self.bias
|
|
else:
|
|
# channels_first: assume shape (B, C, H, W)
|
|
x = x * self.weight[:, None, None] + self.bias[:, None, None]
|
|
return x
|
|
|
|
def extra_repr(self):
|
|
return f"normalized_shape={self.normalized_shape}, alpha_init_value={self.alpha_init_value}, channels_last={self.channels_last}"
|
|
|
|
|
|
class DynamicGraphConstructor(nn.Module):
|
|
def __init__(self, node_num, embed_dim):
|
|
super().__init__()
|
|
self.nodevec1 = nn.Parameter(
|
|
torch.randn(node_num, embed_dim), requires_grad=True
|
|
)
|
|
self.nodevec2 = nn.Parameter(
|
|
torch.randn(node_num, embed_dim), requires_grad=True
|
|
)
|
|
|
|
def forward(self):
|
|
adj = torch.matmul(self.nodevec1, self.nodevec2.T)
|
|
adj = F.relu(adj)
|
|
adj = F.softmax(adj, dim=-1)
|
|
return adj
|
|
|
|
|
|
class GraphConvBlock(nn.Module):
|
|
def __init__(self, input_dim, output_dim):
|
|
super().__init__()
|
|
self.theta = nn.Linear(input_dim, output_dim)
|
|
self.residual = input_dim == output_dim
|
|
if not self.residual:
|
|
self.res_proj = nn.Linear(input_dim, output_dim)
|
|
|
|
def forward(self, x, adj):
|
|
res = x
|
|
x = torch.matmul(adj, x)
|
|
x = self.theta(x)
|
|
x = x + (res if self.residual else self.res_proj(res))
|
|
return F.relu(x)
|
|
|
|
|
|
class MANBA_Block(nn.Module):
|
|
"""
|
|
Multi-head attention + feed-forward network with DynamicTanh replacing LayerNorm.
|
|
"""
|
|
|
|
def __init__(self, input_dim, hidden_dim):
|
|
super().__init__()
|
|
self.attn = nn.MultiheadAttention(
|
|
embed_dim=input_dim, num_heads=4, batch_first=True
|
|
)
|
|
self.ffn = nn.Sequential(
|
|
nn.Linear(input_dim, hidden_dim),
|
|
nn.ReLU(),
|
|
nn.Linear(hidden_dim, input_dim),
|
|
)
|
|
# replace LayerNorm with DynamicTanh
|
|
self.norm1 = DynamicTanh(normalized_shape=input_dim, channels_last=True)
|
|
self.norm2 = DynamicTanh(normalized_shape=input_dim, channels_last=True)
|
|
|
|
def forward(self, x):
|
|
# self-attention
|
|
res = x
|
|
x_attn, _ = self.attn(x, x, x)
|
|
x = self.norm1(res + x_attn)
|
|
# feed-forward
|
|
res2 = x
|
|
x_ffn = self.ffn(x)
|
|
x = self.norm2(res2 + x_ffn)
|
|
return x
|
|
|
|
|
|
class SandwichBlock(nn.Module):
|
|
def __init__(self, num_nodes, embed_dim, hidden_dim):
|
|
super().__init__()
|
|
self.manba1 = MANBA_Block(hidden_dim, hidden_dim * 2)
|
|
self.graph_constructor = DynamicGraphConstructor(num_nodes, embed_dim)
|
|
self.gc = GraphConvBlock(hidden_dim, hidden_dim)
|
|
self.manba2 = MANBA_Block(hidden_dim, hidden_dim * 2)
|
|
|
|
def forward(self, h):
|
|
h1 = self.manba1(h)
|
|
adj = self.graph_constructor()
|
|
h2 = self.gc(h1, adj)
|
|
h3 = self.manba2(h2)
|
|
return h3
|
|
|
|
|
|
class MLP(nn.Module):
|
|
def __init__(self, in_dim, hidden_dims, out_dim, activation=nn.ReLU):
|
|
super().__init__()
|
|
dims = [in_dim] + hidden_dims + [out_dim]
|
|
layers = []
|
|
for i in range(len(dims) - 2):
|
|
layers.append(nn.Linear(dims[i], dims[i + 1]))
|
|
layers.append(activation())
|
|
layers.append(nn.Linear(dims[-2], dims[-1]))
|
|
self.net = nn.Sequential(*layers)
|
|
|
|
def forward(self, x):
|
|
return self.net(x)
|
|
|
|
|
|
class EXP(nn.Module):
|
|
def __init__(self, args):
|
|
super().__init__()
|
|
self.horizon = args["horizon"]
|
|
self.output_dim = args["output_dim"]
|
|
self.seq_len = args.get("in_len", 12)
|
|
self.hidden_dim = args.get("hidden_dim", 64)
|
|
self.num_nodes = args["num_nodes"]
|
|
self.embed_dim = args.get("embed_dim", 16)
|
|
|
|
# discrete time embeddings
|
|
self.time_slots = args.get("time_slots", 24 * 60 // args.get("time_slot", 5))
|
|
self.time_embedding = nn.Embedding(self.time_slots, self.hidden_dim)
|
|
self.day_embedding = nn.Embedding(7, self.hidden_dim)
|
|
|
|
# input projection for flow history
|
|
self.input_proj = MLP(
|
|
in_dim=self.seq_len, hidden_dims=[self.hidden_dim], out_dim=self.hidden_dim
|
|
)
|
|
|
|
# two Sandwich blocks
|
|
self.sandwich1 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim)
|
|
self.sandwich2 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim)
|
|
|
|
# output projection
|
|
self.out_proj = MLP(
|
|
in_dim=self.hidden_dim,
|
|
hidden_dims=[2 * self.hidden_dim],
|
|
out_dim=self.horizon * self.output_dim,
|
|
)
|
|
|
|
def forward(self, x):
|
|
"""
|
|
x: (B, T, N, D_total) where
|
|
x[...,0]=flow, x[...,1]=time_in_day (scaled), x[...,2]=day_in_week
|
|
"""
|
|
x_flow = x[..., 0] # (B, T, N)
|
|
x_time = x[..., 1] # (B, T, N)
|
|
x_day = x[..., 2] # (B, T, N)
|
|
|
|
B, T, N = x_flow.shape
|
|
assert T == self.seq_len, "Input sequence length mismatch"
|
|
|
|
# project flow history
|
|
x_flat = x_flow.permute(0, 2, 1).reshape(B * N, T)
|
|
h0 = self.input_proj(x_flat).view(B, N, self.hidden_dim)
|
|
|
|
# time embeddings at last step
|
|
t_idx = (x_time[:, -1, :] * (self.time_slots - 1)).long()
|
|
d_idx = x_day[:, -1, :].long()
|
|
time_emb = self.time_embedding(t_idx)
|
|
day_emb = self.day_embedding(d_idx)
|
|
|
|
# inject time features
|
|
h0 = h0 + time_emb + day_emb
|
|
|
|
# Sandwich + residuals
|
|
h1 = self.sandwich1(h0) + h0
|
|
h2 = self.sandwich2(h1)
|
|
|
|
# output
|
|
out = self.out_proj(h2)
|
|
out = out.view(B, N, self.horizon, self.output_dim)
|
|
out = out.permute(0, 2, 1, 3)
|
|
return out
|
|
|
|
|
|
# Example usage:
|
|
# args = {'horizon':12, 'output_dim':1, 'num_nodes':170}
|
|
# model = EXP(args)
|
|
# print(model)
|