TrafficWheel/config/STMLP/BJTaxi-InFlow.yaml

70 lines
1.1 KiB
YAML

basic:
dataset: BJTaxi-InFlow
device: cuda:0
mode: train
model: STMLP
seed: 2023
data:
batch_size: 32
column_wise: false
days_per_week: 7
horizon: 24
input_dim: 1
lag: 24
normalizer: std
num_nodes: 1024
steps_per_day: 48
test_ratio: 0.2
val_ratio: 0.2
model:
buildA_true: true
conv_channels: 32
dilation_exponential: 1
dropout: 0.3
end_channels: 128
gcn_depth: 2
gcn_true: true
input_dim: 1
input_window: 24
layer_norm_affline: true
layers: 3
model_type: stmlp
node_dim: 40
num_nodes: 1024
num_split: 1
output_dim: 1
output_window: 24
propalpha: 0.05
residual_channels: 32
skip_channels: 64
step_size1: 2500
step_size2: 100
subgraph_size: 20
tanhalpha: 3
task_level: 0
use_curriculum_learning: true
train:
batch_size: 32
debug: false
early_stop: true
early_stop_patience: 15
epochs: 300
grad_norm: false
log_step: 2000
loss_func: mae
lr_decay: false
lr_decay_rate: 0.3
lr_decay_step: 5,20,40,70
lr_init: 0.003
mae_thresh: 0.0
mape_thresh: 0.0
max_grad_norm: 5
output_dim: 1
plot: false
real_value: true
teacher_stu: true
weight_decay: 0