TrafficWheel/model/STGNCDE/BasicTrainer_cde.py

296 lines
13 KiB
Python
Executable File

import torch
import math
import os
import time
import copy
import numpy as np
from lib.logger import get_logger
from lib.metrics import All_Metrics
from lib.TrainInits import print_model_parameters
from lib.training_stats import TrainingStats
class Trainer(object):
def __init__(self, model, vector_field_f, vector_field_g, loss, optimizer, train_loader, val_loader, test_loader,
scaler, args, lr_scheduler, device, times,
w):
super(Trainer, self).__init__()
self.model = model
self.vector_field_f = vector_field_f
self.vector_field_g = vector_field_g
self.loss = loss
self.optimizer = optimizer
self.train_loader = train_loader
self.val_loader = val_loader
self.test_loader = test_loader
self.scaler = scaler
self.args = args
self.lr_scheduler = lr_scheduler
self.train_per_epoch = len(train_loader)
if val_loader != None:
self.val_per_epoch = len(val_loader)
self.best_path = os.path.join(self.args.log_dir, 'best_model.pth')
self.loss_figure_path = os.path.join(self.args.log_dir, 'loss.png')
#log
if os.path.isdir(args.log_dir) == False and not args.debug:
os.makedirs(args.log_dir, exist_ok=True)
self.logger = get_logger(args.log_dir, name=args.model, debug=args.debug)
self.logger.info('Experiment log path in: {}'.format(args.log_dir))
total_param = print_model_parameters(model, only_num=False)
for arg, value in sorted(vars(args).items()):
self.logger.info("Argument %s: %r", arg, value)
self.logger.info(self.model)
self.logger.info("Total params: {}".format(str(total_param)))
self.device = device
self.times = times.to(self.device, dtype=torch.float)
self.w = w
# Stats tracker
self.stats = TrainingStats(device=device)
def val_epoch(self, epoch, val_dataloader):
self.model.eval()
total_val_loss = 0
with torch.no_grad():
for batch_idx, batch in enumerate(self.val_loader):
start_time = time.time()
# for iter, batch in enumerate(val_dataloader):
batch = tuple(b.to(self.device, dtype=torch.float) for b in batch)
*valid_coeffs, target = batch
# data = data[..., :self.args.input_dim]
label = target[..., :self.args.output_dim]
output = self.model(self.times, valid_coeffs)
if self.args.real_value:
label = self.scaler.inverse_transform(label)
loss = self.loss(output.cuda(), label)
#a whole batch of Metr_LA is filtered
if not torch.isnan(loss):
total_val_loss += loss.item()
step_time = time.time() - start_time
self.stats.record_step_time(step_time, 'val')
val_loss = total_val_loss / len(val_dataloader)
self.logger.info('**********Val Epoch {}: average Loss: {:.6f}'.format(epoch, val_loss))
self.stats.record_memory_usage()
if self.args.tensorboard:
self.w.add_scalar(f'valid/loss', val_loss, epoch)
return val_loss
def train_epoch(self, epoch):
self.model.train()
total_loss = 0
# for batch_idx, (data, target) in enumerate(self.train_loader):
# for batch_idx, (data, target) in enumerate(self.train_loader):
for batch_idx, batch in enumerate(self.train_loader):
start_time = time.time()
batch = tuple(b.to(self.device, dtype=torch.float) for b in batch)
*train_coeffs, target = batch
# data = data[..., :self.args.input_dim]
label = target[..., :self.args.output_dim] # (..., 1)
self.optimizer.zero_grad()
# #teacher_forcing for RNN encoder-decoder model
# #if teacher_forcing_ratio = 1: use label as input in the decoder for all steps
# if self.args.teacher_forcing:
# global_step = (epoch - 1) * self.train_per_epoch + batch_idx
# teacher_forcing_ratio = self._compute_sampling_threshold(global_step, self.args.tf_decay_steps)
# else:
# teacher_forcing_ratio = 1.
#data and target shape: B, T, N, F; output shape: B, T, N, F
output = self.model(self.times, train_coeffs)
# output = self.model(train_coeffs, target, teacher_forcing_ratio=teacher_forcing_ratio)
if self.args.real_value:
label = self.scaler.inverse_transform(label)
loss = self.loss(output.cuda(), label)
# loss = _add_weight_regularisation(loss, self.vector_field_g) #TODO: regularization
# loss = _add_weight_regularisation(loss, self.vector_field_f) #TODO: regularization
loss.backward()
# add max grad clipping
if self.args.grad_norm:
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args.max_grad_norm)
self.optimizer.step()
step_time = time.time() - start_time
self.stats.record_step_time(step_time, 'train')
total_loss += loss.item()
#log information
if batch_idx % self.args.log_step == 0:
self.logger.info('Train Epoch {}: {}/{} Loss: {:.6f}'.format(
epoch, batch_idx, self.train_per_epoch, loss.item()))
train_epoch_loss = total_loss/self.train_per_epoch
self.logger.info('**********Train Epoch {}: averaged Loss: {:.6f}'.format(epoch, train_epoch_loss))
self.stats.record_memory_usage()
if self.args.tensorboard:
self.w.add_scalar(f'train/loss', train_epoch_loss, epoch)
#learning rate decay
if self.args.lr_decay:
self.lr_scheduler.step()
return train_epoch_loss
def train(self):
best_model = None
best_loss = float('inf')
not_improved_count = 0
train_loss_list = []
val_loss_list = []
self.stats.start_training()
start_time = time.time()
for epoch in range(1, self.args.epochs + 1):
#epoch_time = time.time()
train_epoch_loss = self.train_epoch(epoch)
#print(time.time()-epoch_time)
#exit()
if self.val_loader == None:
val_dataloader = self.test_loader
else:
val_dataloader = self.val_loader
val_epoch_loss = self.val_epoch(epoch, val_dataloader)
#print('LR:', self.optimizer.param_groups[0]['lr'])
train_loss_list.append(train_epoch_loss)
val_loss_list.append(val_epoch_loss)
if train_epoch_loss > 1e6:
self.logger.warning('Gradient explosion detected. Ending...')
break
#if self.val_loader == None:
#val_epoch_loss = train_epoch_loss
if val_epoch_loss < best_loss:
best_loss = val_epoch_loss
not_improved_count = 0
best_state = True
else:
not_improved_count += 1
best_state = False
# early stop
if self.args.early_stop:
if not_improved_count == self.args.early_stop_patience:
self.logger.info("Validation performance didn\'t improve for {} epochs. "
"Training stops.".format(self.args.early_stop_patience))
break
# save the best state
if best_state == True:
self.logger.info('*********************************Current best model saved!')
best_model = copy.deepcopy(self.model.state_dict())
# if epoch%10==0:#test
# self.model.load_state_dict(best_model)
# #self.val_epoch(self.args.epochs, self.test_loader)
# self.test_simple(self.model, self.args, self.test_loader, self.scaler, self.logger, None, self.times)
training_time = time.time() - start_time
self.logger.info("Total training time: {:.4f}min, best loss: {:.6f}".format((training_time / 60), best_loss))
self.stats.end_training()
self.stats.report(self.logger)
try:
total_params = sum(p.numel() for p in self.model.parameters() if p.requires_grad)
self.logger.info(f"Trainable params: {total_params}")
except Exception:
pass
#save the best model to file
if not self.args.debug:
torch.save(best_model, self.best_path)
self.logger.info("Saving current best model to " + self.best_path)
# if epoch==10:#test
# self.model.load_state_dict(best_model)
# #self.val_epoch(self.args.epochs, self.test_loader)
# self.test(self.model, self.args, self.test_loader, self.scaler, self.logger, None, self.times)
self.model.load_state_dict(best_model)
#self.val_epoch(self.args.epochs, self.test_loader)
self.test(self.model, self.args, self.test_loader, self.scaler, self.logger, None, self.times)
def save_checkpoint(self):
state = {
'state_dict': self.model.state_dict(),
'optimizer': self.optimizer.state_dict(),
'config': self.args
}
torch.save(state, self.best_path)
self.logger.info("Saving current best model to " + self.best_path)
@staticmethod
def test(model, args, data_loader, scaler, logger, path, times):
if path != None:
check_point = torch.load(path)
state_dict = check_point['state_dict']
args = check_point['config']
model.load_state_dict(state_dict)
model.to(args.device)
model.eval()
y_pred = []
y_true = []
with torch.no_grad():
for batch_idx, batch in enumerate(data_loader):
batch = tuple(b.to(args.device, dtype=torch.float) for b in batch)
*test_coeffs, target = batch
label = target[..., :args.output_dim]
output = model(times.to(args.device, dtype=torch.float), test_coeffs)
y_true.append(label)
y_pred.append(output)
y_true = scaler.inverse_transform(torch.cat(y_true, dim=0))
if args.real_value:
y_pred = torch.cat(y_pred, dim=0)
else:
y_pred = scaler.inverse_transform(torch.cat(y_pred, dim=0))
np.save(args.log_dir+'/{}_true.npy'.format(args.dataset), y_true.cpu().numpy())
np.save(args.log_dir+'/{}_pred.npy'.format(args.dataset), y_pred.cpu().numpy())
for t in range(y_true.shape[1]):
mae, rmse, mape, _, _ = All_Metrics(y_pred[:, t, ...], y_true[:, t, ...],
args.mae_thresh, args.mape_thresh)
logger.info("Horizon {:02d}, MAE: {:.2f}, RMSE: {:.2f}, MAPE: {:.4f}%".format(
t + 1, mae, rmse, mape*100))
mae, rmse, mape, _, _ = All_Metrics(y_pred, y_true, args.mae_thresh, args.mape_thresh)
logger.info("Average Horizon, MAE: {:.2f}, RMSE: {:.2f}, MAPE: {:.4f}%".format(
mae, rmse, mape*100))
@staticmethod
def test_simple(model, args, data_loader, scaler, logger, path, times):
if path != None:
check_point = torch.load(path)
state_dict = check_point['state_dict']
args = check_point['config']
model.load_state_dict(state_dict)
model.to(args.device)
model.eval()
y_pred = []
y_true = []
with torch.no_grad():
for batch_idx, batch in enumerate(data_loader):
# for batch_idx, (data, target) in enumerate(data_loader):
batch = tuple(b.to(args.device, dtype=torch.float) for b in batch)
*test_coeffs, target = batch
# data = data[..., :args.input_dim]
label = target[..., :args.output_dim]
output = model(times.to(args.device, dtype=torch.float), test_coeffs)
y_true.append(label)
y_pred.append(output)
y_true = scaler.inverse_transform(torch.cat(y_true, dim=0))
if args.real_value:
y_pred = torch.cat(y_pred, dim=0)
else:
y_pred = scaler.inverse_transform(torch.cat(y_pred, dim=0))
for t in range(y_true.shape[1]):
mae, rmse, mape, _, _ = All_Metrics(y_pred[:, t, ...], y_true[:, t, ...],
args.mae_thresh, args.mape_thresh)
mae, rmse, mape, _, _ = All_Metrics(y_pred, y_true, args.mae_thresh, args.mape_thresh)
logger.info("Average Horizon, MAE: {:.2f}, RMSE: {:.2f}, MAPE: {:.4f}%".format(
mae, rmse, mape*100))
@staticmethod
def _compute_sampling_threshold(global_step, k):
"""
Computes the sampling probability for scheduled sampling using inverse sigmoid.
:param global_step:
:param k:
:return:
"""
return k / (k + math.exp(global_step / k))
def _add_weight_regularisation(total_loss, regularise_parameters, scaling=0.03):
for parameter in regularise_parameters.parameters():
if parameter.requires_grad:
total_loss = total_loss + scaling * parameter.norm()
return total_loss