TrafficWheel/model/DCRNN/dcrnn_cell.py

163 lines
6.8 KiB
Python
Executable File

import numpy as np
import torch
from model.DCRNN import utils
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class LayerParams:
def __init__(self, rnn_network: torch.nn.Module, layer_type: str):
self._rnn_network = rnn_network
self._params_dict = {}
self._biases_dict = {}
self._type = layer_type
def get_weights(self, shape):
if shape not in self._params_dict:
nn_param = torch.nn.Parameter(torch.empty(*shape, device=device))
torch.nn.init.xavier_normal_(nn_param)
self._params_dict[shape] = nn_param
self._rnn_network.register_parameter('{}_weight_{}'.format(self._type, str(shape)),
nn_param)
return self._params_dict[shape]
def get_biases(self, length, bias_start=0.0):
if length not in self._biases_dict:
biases = torch.nn.Parameter(torch.empty(length, device=device))
torch.nn.init.constant_(biases, bias_start)
self._biases_dict[length] = biases
self._rnn_network.register_parameter('{}_biases_{}'.format(self._type, str(length)),
biases)
return self._biases_dict[length]
class DCGRUCell(torch.nn.Module):
def __init__(self, num_units, adj_mx, max_diffusion_step, num_nodes, nonlinearity='tanh',
filter_type="laplacian", use_gc_for_ru=True):
"""
:param num_units:
:param adj_mx:
:param max_diffusion_step:
:param num_nodes:
:param nonlinearity:
:param filter_type: "laplacian", "random_walk", "dual_random_walk".
:param use_gc_for_ru: whether to use Graph convolution to calculate the reset and update gates.
"""
super().__init__()
self._activation = torch.tanh if nonlinearity == 'tanh' else torch.relu
# support other nonlinearities up here?
self._num_nodes = num_nodes
self._num_units = num_units
self._max_diffusion_step = max_diffusion_step
self._supports = []
self._use_gc_for_ru = use_gc_for_ru
supports = []
if filter_type == "laplacian":
supports.append(utils.calculate_scaled_laplacian(adj_mx, lambda_max=None))
elif filter_type == "random_walk":
supports.append(utils.calculate_random_walk_matrix(adj_mx).T)
elif filter_type == "dual_random_walk":
supports.append(utils.calculate_random_walk_matrix(adj_mx).T)
supports.append(utils.calculate_random_walk_matrix(adj_mx.T).T)
else:
supports.append(utils.calculate_scaled_laplacian(adj_mx))
for support in supports:
self._supports.append(self._build_sparse_matrix(support))
self._fc_params = LayerParams(self, 'fc')
self._gconv_params = LayerParams(self, 'gconv')
@staticmethod
def _build_sparse_matrix(L):
L = L.tocoo()
indices = np.column_stack((L.row, L.col))
# this is to ensure row-major ordering to equal torch.sparse.sparse_reorder(L)
indices = indices[np.lexsort((indices[:, 0], indices[:, 1]))]
L = torch.sparse_coo_tensor(indices.T, L.data, L.shape, device=device)
return L
def forward(self, inputs, hx):
"""Gated recurrent unit (GRU) with Graph Convolution.
:param inputs: (B, num_nodes * input_dim)
:param hx: (B, num_nodes * rnn_units)
:return
- Output: A `2-D` tensor with shape `(B, num_nodes * rnn_units)`.
"""
output_size = 2 * self._num_units
if self._use_gc_for_ru:
fn = self._gconv
else:
fn = self._fc
value = torch.sigmoid(fn(inputs, hx, output_size, bias_start=1.0))
value = torch.reshape(value, (-1, self._num_nodes, output_size))
r, u = torch.split(tensor=value, split_size_or_sections=self._num_units, dim=-1)
r = torch.reshape(r, (-1, self._num_nodes * self._num_units))
u = torch.reshape(u, (-1, self._num_nodes * self._num_units))
c = self._gconv(inputs, r * hx, self._num_units)
if self._activation is not None:
c = self._activation(c)
new_state = u * hx + (1.0 - u) * c
return new_state
@staticmethod
def _concat(x, x_):
x_ = x_.unsqueeze(0)
return torch.cat([x, x_], dim=0)
def _fc(self, inputs, state, output_size, bias_start=0.0):
batch_size = inputs.shape[0]
inputs = torch.reshape(inputs, (batch_size * self._num_nodes, -1))
state = torch.reshape(state, (batch_size * self._num_nodes, -1))
inputs_and_state = torch.cat([inputs, state], dim=-1)
input_size = inputs_and_state.shape[-1]
weights = self._fc_params.get_weights((input_size, output_size))
value = torch.sigmoid(torch.matmul(inputs_and_state, weights))
biases = self._fc_params.get_biases(output_size, bias_start)
value += biases
return value
def _gconv(self, inputs, state, output_size, bias_start=0.0):
# Reshape input and state to (batch_size, num_nodes, input_dim/state_dim)
batch_size = inputs.shape[0]
inputs = torch.reshape(inputs, (batch_size, self._num_nodes, -1))
state = torch.reshape(state, (batch_size, self._num_nodes, -1))
inputs_and_state = torch.cat([inputs, state], dim=2)
input_size = inputs_and_state.size(2)
x = inputs_and_state
x0 = x.permute(1, 2, 0) # (num_nodes, total_arg_size, batch_size)
x0 = torch.reshape(x0, shape=[self._num_nodes, input_size * batch_size])
x = torch.unsqueeze(x0, 0)
if self._max_diffusion_step == 0:
pass
else:
for support in self._supports:
x1 = torch.sparse.mm(support, x0)
x = self._concat(x, x1)
for k in range(2, self._max_diffusion_step + 1):
x2 = 2 * torch.sparse.mm(support, x1) - x0
x = self._concat(x, x2)
x1, x0 = x2, x1
num_matrices = len(self._supports) * self._max_diffusion_step + 1 # Adds for x itself.
x = torch.reshape(x, shape=[num_matrices, self._num_nodes, input_size, batch_size])
x = x.permute(3, 1, 2, 0) # (batch_size, num_nodes, input_size, order)
x = torch.reshape(x, shape=[batch_size * self._num_nodes, input_size * num_matrices])
weights = self._gconv_params.get_weights((input_size * num_matrices, output_size))
x = torch.matmul(x, weights) # (batch_size * self._num_nodes, output_size)
biases = self._gconv_params.get_biases(output_size, bias_start)
x += biases
# Reshape res back to 2D: (batch_size, num_node, state_dim) -> (batch_size, num_node * state_dim)
return torch.reshape(x, [batch_size, self._num_nodes * output_size])