82 lines
2.8 KiB
Python
Executable File
82 lines
2.8 KiB
Python
Executable File
import torch
|
||
import torch.nn as nn
|
||
import torch.nn.functional as F
|
||
|
||
class ResidualMLPBlock(nn.Module):
|
||
"""
|
||
一个隐藏维度下的残差块:
|
||
x -> Linear(hidden->hidden) -> ReLU -> Dropout
|
||
-> Linear(hidden->hidden) -> Dropout
|
||
+ 残差跳连 -> LayerNorm
|
||
"""
|
||
def __init__(self, hidden_dim, dropout=0.1):
|
||
super().__init__()
|
||
self.fc1 = nn.Linear(hidden_dim, hidden_dim)
|
||
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
|
||
self.drop = nn.Dropout(dropout)
|
||
self.norm = nn.LayerNorm(hidden_dim)
|
||
|
||
def forward(self, x):
|
||
resid = x
|
||
x = F.relu(self.fc1(x))
|
||
x = self.drop(x)
|
||
x = self.fc2(x)
|
||
x = self.drop(x)
|
||
return self.norm(x + resid)
|
||
|
||
|
||
class EXP(nn.Module):
|
||
"""
|
||
带残差连接的多层 MLP 预测模型:
|
||
- 输入 x: (B, T, N, D_total),使用 x[...,0]。
|
||
- seq_len=T 的序列先投影到 hidden_dim,
|
||
再经过 num_blocks 个 ResidualMLPBlock。
|
||
- 最后投影到 horizon * output_dim,重塑为 (B, horizon, N, output_dim)。
|
||
"""
|
||
def __init__(self, args):
|
||
super().__init__()
|
||
self.horizon = args['horizon']
|
||
self.output_dim = args['output_dim']
|
||
self.seq_len = args.get('in_len', 12) # 序列长度 T,默认 12
|
||
hidden_dim = args.get('hidden_dim', 64)
|
||
num_blocks = args.get('num_mlp_layers', 2)
|
||
dropout = args.get('dropout', 0.1)
|
||
|
||
# 1) 输入投影:T -> hidden_dim
|
||
self.input_proj = nn.Linear(self.seq_len, hidden_dim)
|
||
self.input_drop = nn.Dropout(dropout)
|
||
|
||
# 2) 残差 MLP 块
|
||
self.blocks = nn.ModuleList([
|
||
ResidualMLPBlock(hidden_dim, dropout=dropout)
|
||
for _ in range(num_blocks)
|
||
])
|
||
|
||
# 3) 输出投影:hidden_dim -> horizon * output_dim
|
||
self.decoder = nn.Linear(hidden_dim, self.horizon * self.output_dim)
|
||
|
||
def forward(self, x):
|
||
# x: (B, T, N, D_total)
|
||
x_main = x[..., 0] # (B, T, N)
|
||
B, T, N = x_main.shape
|
||
assert T == self.seq_len, f"期望序列长度 {self.seq_len}, 实际 {T}"
|
||
|
||
# 每个节点的长度-T 序列作为独立样本
|
||
h_in = x_main.permute(0, 2, 1).reshape(B * N, T) # (B*N, T)
|
||
|
||
# 1) 输入投影 + Dropout
|
||
h = F.relu(self.input_proj(h_in)) # (B*N, hidden_dim)
|
||
h = self.input_drop(h)
|
||
|
||
# 2) 残差块堆叠
|
||
for block in self.blocks:
|
||
h = block(h) # (B*N, hidden_dim)
|
||
|
||
# 3) 解码到 horizon * output_dim
|
||
out_flat = self.decoder(h) # (B*N, horizon * output_dim)
|
||
|
||
# 4) 重塑为 (B, horizon, N, output_dim)
|
||
out = out_flat.view(B, N, self.horizon, self.output_dim) \
|
||
.permute(0, 2, 1, 3)
|
||
return out
|