134 lines
4.1 KiB
Python
Executable File
134 lines
4.1 KiB
Python
Executable File
import torch
|
||
import torch.nn as nn
|
||
import torch.nn.functional as F
|
||
|
||
"""
|
||
含残差版本
|
||
"""
|
||
|
||
class DynamicGraphConstructor(nn.Module):
|
||
def __init__(self, node_num, embed_dim):
|
||
super().__init__()
|
||
self.nodevec1 = nn.Parameter(torch.randn(node_num, embed_dim), requires_grad=True)
|
||
self.nodevec2 = nn.Parameter(torch.randn(node_num, embed_dim), requires_grad=True)
|
||
|
||
def forward(self):
|
||
# (N, D) @ (D, N) -> (N, N)
|
||
adj = torch.matmul(self.nodevec1, self.nodevec2.T)
|
||
adj = F.relu(adj)
|
||
adj = F.softmax(adj, dim=-1)
|
||
return adj
|
||
|
||
|
||
class GraphConvBlock(nn.Module):
|
||
def __init__(self, input_dim, output_dim):
|
||
super().__init__()
|
||
self.theta = nn.Linear(input_dim, output_dim)
|
||
self.residual = input_dim == output_dim
|
||
if not self.residual:
|
||
self.res_proj = nn.Linear(input_dim, output_dim)
|
||
|
||
def forward(self, x, adj):
|
||
# x: (B, N, C) / adj: (N, N)
|
||
res = x
|
||
x = torch.matmul(adj, x) # (B, N, C)
|
||
x = self.theta(x)
|
||
|
||
# 残差连接
|
||
if self.residual:
|
||
x = x + res
|
||
else:
|
||
x = x + self.res_proj(res)
|
||
|
||
return F.relu(x)
|
||
|
||
|
||
class MANBA_Block(nn.Module):
|
||
def __init__(self, input_dim, hidden_dim):
|
||
super().__init__()
|
||
self.attn = nn.MultiheadAttention(embed_dim=input_dim, num_heads=4, batch_first=True)
|
||
self.ffn = nn.Sequential(
|
||
nn.Linear(input_dim, hidden_dim),
|
||
nn.ReLU(),
|
||
nn.Linear(hidden_dim, input_dim)
|
||
)
|
||
self.norm1 = nn.LayerNorm(input_dim)
|
||
self.norm2 = nn.LayerNorm(input_dim)
|
||
|
||
def forward(self, x):
|
||
# x: (B, T, C)
|
||
res = x
|
||
x_attn, _ = self.attn(x, x, x)
|
||
x = self.norm1(res + x_attn)
|
||
|
||
res2 = x
|
||
x_ffn = self.ffn(x)
|
||
x = self.norm2(res2 + x_ffn)
|
||
|
||
return x
|
||
|
||
|
||
class EXP(nn.Module):
|
||
def __init__(self, args):
|
||
super().__init__()
|
||
self.horizon = args['horizon']
|
||
self.output_dim = args['output_dim']
|
||
self.seq_len = args.get('in_len', 12)
|
||
self.hidden_dim = args.get('hidden_dim', 64)
|
||
self.num_nodes = args['num_nodes']
|
||
|
||
self.time_slots = args.get('time_slots', 24 * 60 // args.get('time_slot', 5))
|
||
self.time_embedding = nn.Embedding(self.time_slots, self.hidden_dim)
|
||
self.day_embedding = nn.Embedding(7, self.hidden_dim)
|
||
|
||
# 动态图构建
|
||
self.graph = DynamicGraphConstructor(self.num_nodes, embed_dim=16)
|
||
|
||
# 输入映射层
|
||
self.input_proj = nn.Linear(self.seq_len, self.hidden_dim)
|
||
|
||
# 图卷积
|
||
self.gc = GraphConvBlock(self.hidden_dim, self.hidden_dim)
|
||
|
||
# MANBA block
|
||
self.manba = MANBA_Block(self.hidden_dim, self.hidden_dim * 2)
|
||
|
||
# 输出映射
|
||
self.out_proj = nn.Linear(self.hidden_dim, self.horizon * self.output_dim)
|
||
|
||
def forward(self, x):
|
||
# x: (B, T, N, D_total)
|
||
x_time = x[..., 1] # (B, T, N)
|
||
x_day = x[..., 2] # (B, T, N)
|
||
x = x[..., 0] # 只用主通道 (B, T, N)
|
||
B, T, N = x.shape
|
||
assert T == self.seq_len
|
||
|
||
# 输入投影 (B, T, N) -> (B, N, T) -> (B*N, T) -> (B*N, H)
|
||
x = x.permute(0, 2, 1).reshape(B * N, T)
|
||
h = self.input_proj(x) # (B*N, hidden_dim)
|
||
h = h.view(B, N, self.hidden_dim)
|
||
|
||
t_idx = (x_time[:, -1, :,] * (self.time_slots - 1)).long() # (B, N)
|
||
d_idx = x_day[:, -1, :,].long() # (B, N)
|
||
|
||
time_emb = self.time_embedding(t_idx) # (B, N, hidden_dim)
|
||
day_emb = self.day_embedding(d_idx) # (B, N, hidden_dim)
|
||
|
||
# 3) inject them into the initial hidden state
|
||
h = h + time_emb + day_emb
|
||
|
||
# 动态图构建
|
||
adj = self.graph() # (N, N)
|
||
|
||
# 空间建模:图卷积
|
||
h = self.gc(h, adj) # (B, N, hidden_dim)
|
||
|
||
# 时间建模:MANBA
|
||
h = self.manba(h) # (B, N, hidden_dim)
|
||
|
||
# 输出映射
|
||
out = self.out_proj(h) # (B, N, horizon * output_dim)
|
||
out = out.view(B, N, self.horizon, self.output_dim).permute(0, 2, 1, 3)
|
||
return out # (B, horizon, N, output_dim)
|