53 lines
1.5 KiB
Python
Executable File
53 lines
1.5 KiB
Python
Executable File
import torch
|
|
|
|
|
|
def masked_mae_loss(scaler, mask_value):
|
|
def loss(preds, labels):
|
|
# # 仅对预测反归一化;标签在数据管道中保持原始量纲
|
|
# if scaler:
|
|
# preds = scaler.inverse_transform(preds)
|
|
return mae_torch(pred=preds, true=labels, mask_value=mask_value)
|
|
|
|
return loss
|
|
|
|
|
|
def mae_torch(pred, true, mask_value=None):
|
|
if mask_value is not None:
|
|
mask = torch.gt(true, mask_value)
|
|
pred = torch.masked_select(pred, mask)
|
|
true = torch.masked_select(true, mask)
|
|
return torch.mean(torch.abs(true - pred))
|
|
|
|
|
|
def rmse_torch(pred, true, mask_value=None):
|
|
if mask_value is not None:
|
|
mask = torch.gt(true, mask_value)
|
|
pred = torch.masked_select(pred, mask)
|
|
true = torch.masked_select(true, mask)
|
|
return torch.sqrt(torch.mean((pred - true) ** 2))
|
|
|
|
|
|
def mape_torch(pred, true, mask_value=None):
|
|
if mask_value is not None:
|
|
mask = torch.gt(true, mask_value)
|
|
pred = torch.masked_select(pred, mask)
|
|
true = torch.masked_select(true, mask)
|
|
return torch.mean(torch.abs(torch.div((true - pred), (true + 0.001))))
|
|
|
|
|
|
def all_metrics(pred, true, mask1, mask2):
|
|
if mask1 == "None":
|
|
mask1 = None
|
|
if mask2 == "None":
|
|
mask2 = None
|
|
mae = mae_torch(pred, true, mask1)
|
|
rmse = rmse_torch(pred, true, mask1)
|
|
mape = mape_torch(pred, true, mask2)
|
|
return mae, rmse, mape
|
|
|
|
|
|
if __name__ == "__main__":
|
|
pred = torch.Tensor([1, 2, 3, 4])
|
|
true = torch.Tensor([2, 1, 4, 5])
|
|
print(all_metrics(pred, true, None, None))
|