TrafficWheel/model/PatchTST/PatchTST.py

110 lines
4.0 KiB
Python

import torch
from torch import nn
from model.PatchTST.layers.Transformer import Encoder, EncoderLayer
from model.PatchTST.layers.SelfAttention import FullAttention, AttentionLayer
from model.PatchTST.layers.Embed import PatchEmbedding
class Transpose(nn.Module):
def __init__(self, *dims, contiguous=False):
super().__init__()
self.dims, self.contiguous = dims, contiguous
def forward(self, x):
if self.contiguous: return x.transpose(*self.dims).contiguous()
else: return x.transpose(*self.dims)
class FlattenHead(nn.Module):
def __init__(self, n_vars, nf, target_window, head_dropout=0):
super().__init__()
self.n_vars = n_vars
self.flatten = nn.Flatten(start_dim=-2)
self.linear = nn.Linear(nf, target_window)
self.dropout = nn.Dropout(head_dropout)
def forward(self, x): # x: [bs x nvars x d_model x patch_num]
x = self.flatten(x)
x = self.linear(x)
x = self.dropout(x)
return x
class Model(nn.Module):
"""
Paper link: https://arxiv.org/pdf/2211.14730.pdf
"""
def __init__(self, configs):
"""
patch_len: int, patch len for patch_embedding
stride: int, stride for patch_embedding
"""
super().__init__()
self.seq_len = configs['seq_len']
self.pred_len = configs['pred_len']
self.patch_len = configs['patch_len']
self.stride = configs['stride']
padding = self.stride
# patching and embedding
self.patch_embedding = PatchEmbedding(
configs['d_model'], self.patch_len, self.stride, padding, configs['dropout'])
# Encoder
self.encoder = Encoder(
[
EncoderLayer(
AttentionLayer(
FullAttention(False, attention_dropout=configs['dropout'],
output_attention=False), configs['d_model'], configs['n_heads']),
configs['d_model'],
configs['d_ff'],
dropout=configs['dropout'],
activation=configs['activation']
) for l in range(configs['e_layers'])
],
norm_layer=nn.Sequential(Transpose(1,2), nn.BatchNorm1d(configs['d_model']), Transpose(1,2))
)
# Prediction Head
self.head_nf = configs['d_model'] * \
int((configs['seq_len'] - self.patch_len) / self.stride + 2)
self.head = FlattenHead(configs['enc_in'], self.head_nf, configs['pred_len'],
head_dropout=configs['dropout'])
def forecast(self, x_enc):
# Normalization from Non-stationary Transformer
means = x_enc.mean(1, keepdim=True).detach()
x_enc = x_enc - means
stdev = torch.sqrt(
torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5)
x_enc /= stdev
# do patching and embedding
x_enc = x_enc.permute(0, 2, 1)
# u: [bs * nvars x patch_num x d_model]
enc_out, n_vars = self.patch_embedding(x_enc)
# Encoder
# z: [bs * nvars x patch_num x d_model]
enc_out, attns = self.encoder(enc_out)
# z: [bs x nvars x patch_num x d_model]
enc_out = torch.reshape(
enc_out, (-1, n_vars, enc_out.shape[-2], enc_out.shape[-1]))
# z: [bs x nvars x d_model x patch_num]
enc_out = enc_out.permute(0, 1, 3, 2)
# Decoder
dec_out = self.head(enc_out) # z: [bs x nvars x target_window]
dec_out = dec_out.permute(0, 2, 1)
# De-Normalization from Non-stationary Transformer
dec_out = dec_out * \
(stdev[:, 0, :].unsqueeze(1).repeat(1, self.pred_len, 1))
dec_out = dec_out + \
(means[:, 0, :].unsqueeze(1).repeat(1, self.pred_len, 1))
return dec_out
def forward(self, x_enc):
dec_out = self.forecast(x_enc)
return dec_out[:, -self.pred_len:, :] # [B, L, D]