TrafficWheel/model/DDGCRN/DDGCRN.py

174 lines
6.6 KiB
Python
Executable File

import torch, torch.nn as nn, torch.nn.functional as F
from collections import OrderedDict
class DGCRM(nn.Module):
def __init__(self, node_num, dim_in, dim_out, cheb_k, embed_dim, num_layers=1):
super().__init__()
self.node_num, self.input_dim, self.num_layers = node_num, dim_in, num_layers
self.cells = nn.ModuleList(
[
DDGCRNCell(
node_num, dim_in if i == 0 else dim_out, dim_out, cheb_k, embed_dim
)
for i in range(num_layers)
]
)
def forward(self, x, init_state, node_embeddings):
assert x.shape[2] == self.node_num and x.shape[3] == self.input_dim
for i in range(self.num_layers):
state, inner = init_state[i].to(x.device), []
for t in range(x.shape[1]):
state = self.cells[i](
x[:, t, :, :],
state,
[node_embeddings[0][:, t, :, :], node_embeddings[1]],
)
inner.append(state)
init_state[i] = state
x = torch.stack(inner, dim=1)
return x, init_state
def init_hidden(self, bs):
return torch.stack([cell.init_hidden_state(bs) for cell in self.cells], dim=0)
class DDGCRN(nn.Module):
def __init__(self, args):
super().__init__()
self.num_node, self.input_dim, self.hidden_dim = (
args["num_nodes"],
args["input_dim"],
args["rnn_units"],
)
self.output_dim, self.horizon, self.num_layers = (
args["output_dim"],
args["horizon"],
args["num_layers"],
)
self.use_day, self.use_week = args["use_day"], args["use_week"]
self.node_embeddings1 = nn.Parameter(
torch.randn(self.num_node, args["embed_dim"]), requires_grad=True
)
self.node_embeddings2 = nn.Parameter(
torch.randn(self.num_node, args["embed_dim"]), requires_grad=True
)
self.T_i_D_emb = nn.Parameter(torch.empty(288, args["embed_dim"]))
self.D_i_W_emb = nn.Parameter(torch.empty(7, args["embed_dim"]))
self.drop1, self.drop2 = nn.Dropout(0.1), nn.Dropout(0.1)
self.encoder1 = DGCRM(
self.num_node,
self.input_dim,
self.hidden_dim,
args["cheb_order"],
args["embed_dim"],
self.num_layers,
)
self.encoder2 = DGCRM(
self.num_node,
self.input_dim,
self.hidden_dim,
args["cheb_order"],
args["embed_dim"],
self.num_layers,
)
self.end_conv1 = nn.Conv2d(
1, self.horizon * self.output_dim, (1, self.hidden_dim)
)
self.end_conv2 = nn.Conv2d(
1, self.horizon * self.output_dim, (1, self.hidden_dim)
)
self.end_conv3 = nn.Conv2d(
1, self.horizon * self.output_dim, (1, self.hidden_dim)
)
def forward(self, source):
node_embed = self.node_embeddings1
if self.use_day:
node_embed = node_embed * self.T_i_D_emb[(source[..., 1] * 288).long()]
if self.use_week:
node_embed = node_embed * self.D_i_W_emb[source[..., 2].long()]
node_embeddings = [node_embed, self.node_embeddings1]
source = source[..., 0].unsqueeze(-1)
init1 = self.encoder1.init_hidden(source.shape[0])
out, _ = self.encoder1(source, init1, node_embeddings)
out = self.drop1(out[:, -1:, :, :])
out1 = self.end_conv1(out)
src1 = self.end_conv2(out)
src2 = source[:, -self.horizon :, ...] - src1
init2 = self.encoder2.init_hidden(source.shape[0])
out2, _ = self.encoder2(src2, init2, node_embeddings)
out2 = self.drop2(out2[:, -1:, :, :])
return out1 + self.end_conv3(out2)
class DDGCRNCell(nn.Module):
def __init__(self, node_num, dim_in, dim_out, cheb_k, embed_dim):
super().__init__()
self.node_num, self.hidden_dim = node_num, dim_out
self.gate = DGCN(dim_in + dim_out, 2 * dim_out, cheb_k, embed_dim, node_num)
self.update = DGCN(dim_in + dim_out, dim_out, cheb_k, embed_dim, node_num)
def forward(self, x, state, node_embeddings):
inp = torch.cat((x, state), -1)
z_r = torch.sigmoid(self.gate(inp, node_embeddings))
z, r = torch.split(z_r, self.hidden_dim, -1)
hc = torch.tanh(self.update(torch.cat((x, z * state), -1), node_embeddings))
return r * state + (1 - r) * hc
def init_hidden_state(self, bs):
return torch.zeros(bs, self.node_num, self.hidden_dim)
class DGCN(nn.Module):
def __init__(self, dim_in, dim_out, cheb_k, embed_dim, num_nodes):
super().__init__()
self.cheb_k, self.embed_dim = cheb_k, embed_dim
self.weights_pool = nn.Parameter(
torch.FloatTensor(embed_dim, cheb_k, dim_in, dim_out)
)
self.weights = nn.Parameter(torch.FloatTensor(cheb_k, dim_in, dim_out))
self.bias_pool = nn.Parameter(torch.FloatTensor(embed_dim, dim_out))
self.bias = nn.Parameter(torch.FloatTensor(dim_out))
self.fc = nn.Sequential(
OrderedDict(
[
("fc1", nn.Linear(dim_in, 16)),
("sigmoid1", nn.Sigmoid()),
("fc2", nn.Linear(16, 2)),
("sigmoid2", nn.Sigmoid()),
("fc3", nn.Linear(2, embed_dim)),
]
)
)
# 预注册恒定不变的单位矩阵
self.register_buffer("eye", torch.eye(num_nodes))
def forward(self, x, node_embeddings):
supp1 = self.eye.to(node_embeddings[0].device)
filt = self.fc(x)
nodevec = torch.tanh(node_embeddings[0] * filt)
supp2 = self.get_laplacian(
F.relu(torch.matmul(nodevec, nodevec.transpose(2, 1))), supp1
)
x_g = torch.stack(
[
torch.einsum("nm,bmc->bnc", supp1, x),
torch.einsum("bnm,bmc->bnc", supp2, x),
],
dim=1,
)
weights = torch.einsum("nd,dkio->nkio", node_embeddings[1], self.weights_pool)
bias = torch.matmul(node_embeddings[1], self.bias_pool)
return torch.einsum("bnki,nkio->bno", x_g.permute(0, 2, 1, 3), weights) + bias
@staticmethod
def get_laplacian(graph, I, normalize=True):
D_inv = torch.diag_embed(torch.sum(graph, -1) ** (-0.5))
return (
torch.matmul(torch.matmul(D_inv, graph), D_inv)
if normalize
else torch.matmul(torch.matmul(D_inv, graph + I), D_inv)
)