TrafficWheel/lib/Trainer_old.py

262 lines
9.4 KiB
Python
Executable File

import torch
import math
import os
import time
import copy
import numpy as np
# import pynvml
from lib.logger import get_logger
from lib.loss_function import all_metrics
class Trainer(object):
def __init__(
self,
model,
loss,
optimizer,
train_loader,
val_loader,
test_loader,
scaler,
args,
lr_scheduler=None,
):
super(Trainer, self).__init__()
self.model = model
self.loss = loss
self.optimizer = optimizer
self.train_loader = train_loader
self.val_loader = val_loader
self.test_loader = test_loader
self.scaler = scaler
self.args = args
self.lr_scheduler = lr_scheduler
self.train_per_epoch = len(train_loader)
if val_loader != None:
self.val_per_epoch = len(val_loader)
self.best_path = os.path.join(self.args["log_dir"], "best_model.pth")
self.best_test_path = os.path.join(self.args["log_dir"], "best_test_model.pth")
self.loss_figure_path = os.path.join(self.args["log_dir"], "loss.png")
# log
if os.path.isdir(args["log_dir"]) == False and not args["debug"]:
os.makedirs(args["log_dir"], exist_ok=True)
self.logger = get_logger(
args["log_dir"], name=self.model.__class__.__name__, debug=args["debug"]
)
self.logger.info("Experiment log path in: {}".format(args["log_dir"]))
def val_epoch(self, epoch, val_dataloader):
self.model.eval()
total_val_loss = 0
epoch_time = time.time()
with torch.no_grad():
for batch_idx, (data, target) in enumerate(val_dataloader):
data = data
label = target[..., : self.args["output_dim"]]
output = self.model(data)
if self.args["real_value"]:
output = self.scaler.inverse_transform(output)
loss = self.loss(output.cuda(), label)
if not torch.isnan(loss):
total_val_loss += loss.item()
val_loss = total_val_loss / len(val_dataloader)
self.logger.info(
"Val Epoch {}: average Loss: {:.6f}, train time: {:.2f} s".format(
epoch, val_loss, time.time() - epoch_time
)
)
return val_loss
def test_epoch(self, epoch, test_dataloader):
self.model.eval()
total_test_loss = 0
epoch_time = time.time()
with torch.no_grad():
for batch_idx, (data, target) in enumerate(test_dataloader):
data = data
label = target[..., : self.args["output_dim"]]
output = self.model(data)
if self.args["real_value"]:
output = self.scaler.inverse_transform(output)
loss = self.loss(output.cuda(), label)
if not torch.isnan(loss):
total_test_loss += loss.item()
test_loss = total_test_loss / len(test_dataloader)
self.logger.info(
"test Epoch {}: average Loss: {:.6f}, train time: {:.2f} s".format(
epoch, test_loss, time.time() - epoch_time
)
)
return test_loss
def train_epoch(self, epoch):
self.model.train()
total_loss = 0
epoch_time = time.time()
for batch_idx, (data, target) in enumerate(self.train_loader):
data = data
label = target[..., : self.args["output_dim"]]
self.optimizer.zero_grad()
output = self.model(data)
if self.args["real_value"]:
output = self.scaler.inverse_transform(output)
loss = self.loss(output.cuda(), label)
loss.backward()
# add max grad clipping
if self.args["grad_norm"]:
torch.nn.utils.clip_grad_norm_(
self.model.parameters(), self.args["max_grad_norm"]
)
self.optimizer.step()
total_loss += loss.item()
# log information
if (batch_idx + 1) % self.args["log_step"] == 0:
self.logger.info(
"Train Epoch {}: {}/{} Loss: {:.6f}".format(
epoch, batch_idx + 1, self.train_per_epoch, loss.item()
)
)
train_epoch_loss = total_loss / self.train_per_epoch
self.logger.info(
"Train Epoch {}: averaged Loss: {:.6f}, train time: {:.2f} s".format(
epoch, train_epoch_loss, time.time() - epoch_time
)
)
# learning rate decay
if self.args["lr_decay"]:
self.lr_scheduler.step()
return train_epoch_loss
def train(self):
best_model = None
best_test_model = None
not_improved_count = 0
best_loss = float("inf")
best_test_loss = float("inf")
vaild_loss = []
for epoch in range(0, self.args["epochs"]):
train_epoch_loss = self.train_epoch(epoch)
if self.val_loader == None:
val_dataloader = self.test_loader
else:
val_dataloader = self.val_loader
test_dataloader = self.test_loader
val_epoch_loss = self.val_epoch(epoch, val_dataloader)
vaild_loss.append(val_epoch_loss)
test_epoch_loss = self.test_epoch(epoch, test_dataloader)
if train_epoch_loss > 1e6:
self.logger.warning("Gradient explosion detected. Ending...")
break
if val_epoch_loss < best_loss:
best_loss = val_epoch_loss
not_improved_count = 0
best_state = True
else:
not_improved_count += 1
best_state = False
# early stop
if self.args["early_stop"]:
if not_improved_count == self.args["early_stop_patience"]:
self.logger.info(
"Validation performance didn't improve for {} epochs. "
"Training stops.".format(self.args["early_stop_patience"])
)
break
# save the best state
if best_state == True:
self.logger.info("Current best model saved!")
best_model = copy.deepcopy(self.model.state_dict())
if test_epoch_loss < best_test_loss:
best_test_loss = test_epoch_loss
best_test_model = copy.deepcopy(self.model.state_dict())
# save the best model to file
if not self.args["debug"]:
torch.save(best_model, self.best_path)
self.logger.info("Saving current best model to " + self.best_path)
torch.save(best_test_model, self.best_test_path)
self.logger.info("Saving current best model to " + self.best_test_path)
# test
self.model.load_state_dict(best_model)
self.test(self.model, self.args, self.test_loader, self.scaler, self.logger)
self.logger.info("This is best_test_model")
self.model.load_state_dict(best_test_model)
self.test(self.model, self.args, self.test_loader, self.scaler, self.logger)
def save_checkpoint(self):
state = {
"state_dict": self.model.state_dict(),
"optimizer": self.optimizer.state_dict(),
"config": self.args,
}
torch.save(state, self.best_path)
self.logger.info("Saving current best model to " + self.best_path)
@staticmethod
def test(model, args, data_loader, scaler, logger, path=None):
if path != None:
check_point = torch.load(path)
state_dict = check_point["state_dict"]
args = check_point["config"]
model.load_state_dict(state_dict)
model.to(args["device"])
model.eval()
y_pred = []
y_true = []
with torch.no_grad():
for batch_idx, (data, target) in enumerate(data_loader):
data = data
label = target[..., : args["output_dim"]]
output = model(data)
y_true.append(label)
y_pred.append(output)
if args["real_value"]:
y_pred = scaler.inverse_transform(torch.cat(y_pred, dim=0))
y_true = torch.cat(y_true, dim=0)
else:
y_pred = torch.cat(y_pred, dim=0)
y_true = torch.cat(y_true, dim=0)
for t in range(y_true.shape[1]):
mae, rmse, mape = all_metrics(
y_pred[:, t, ...],
y_true[:, t, ...],
args["mae_thresh"],
args["mape_thresh"],
)
logger.info(
"Horizon {:02d}, MAE: {:.4f}, RMSE: {:.4f}, MAPE: {:.4f}".format(
t + 1, mae, rmse, mape
)
)
mae, rmse, mape = all_metrics(
y_pred, y_true, args["mae_thresh"], args["mape_thresh"]
)
logger.info(
"Average Horizon, MAE: {:.4f}, RMSE: {:.4f}, MAPE: {:.4f}".format(
mae, rmse, mape
)
)
@staticmethod
def _compute_sampling_threshold(global_step, k):
"""
Computes the sampling probability for scheduled sampling using inverse sigmoid.
:param global_step:
:param k:
:return:
"""
return k / (k + math.exp(global_step / k))