TrafficWheel/trainer/EXP_trainer.py

230 lines
8.1 KiB
Python
Executable File

import math
import os
import time
import copy
from tqdm import tqdm
import torch
from lib.logger import get_logger
from lib.loss_function import all_metrics
from lib.training_stats import TrainingStats
class Trainer:
def __init__(
self,
model,
loss,
optimizer,
train_loader,
val_loader,
test_loader,
scaler,
args,
lr_scheduler=None,
):
self.model = model
self.loss = loss
self.optimizer = optimizer
self.train_loader = train_loader
self.val_loader = val_loader
self.test_loader = test_loader
self.scaler = scaler
self.args = args
self.lr_scheduler = lr_scheduler
self.train_per_epoch = len(train_loader)
self.val_per_epoch = len(val_loader) if val_loader else 0
# Paths for saving models and logs
self.best_path = os.path.join(args["log_dir"], "best_model.pth")
self.best_test_path = os.path.join(args["log_dir"], "best_test_model.pth")
self.loss_figure_path = os.path.join(args["log_dir"], "loss.png")
# Initialize logger
if not os.path.isdir(args["log_dir"]) and not args["debug"]:
os.makedirs(args["log_dir"], exist_ok=True)
self.logger = get_logger(
args["log_dir"], name=self.model.__class__.__name__, debug=args["debug"]
)
self.logger.info(f"Experiment log path in: {args['log_dir']}")
# Stats tracker
self.stats = TrainingStats(device=args["device"])
def _run_epoch(self, epoch, dataloader, mode):
if mode == "train":
self.model.train()
optimizer_step = True
else:
self.model.eval()
optimizer_step = False
total_loss = 0
epoch_time = time.time()
with torch.set_grad_enabled(optimizer_step):
with tqdm(
total=len(dataloader), desc=f"{mode.capitalize()} Epoch {epoch}"
) as pbar:
for batch_idx, (data, target) in enumerate(dataloader):
start_time = time.time()
label = target[..., : self.args["output_dim"]]
output = self.model(data).to(self.args["device"])
if self.args["real_value"]:
output = self.scaler.inverse_transform(output)
loss = self.loss(output, label)
if optimizer_step and self.optimizer is not None:
self.optimizer.zero_grad()
loss.backward()
if self.args["grad_norm"]:
torch.nn.utils.clip_grad_norm_(
self.model.parameters(), self.args["max_grad_norm"]
)
self.optimizer.step()
step_time = time.time() - start_time
self.stats.record_step_time(step_time, mode)
total_loss += loss.item()
if mode == "train" and (batch_idx + 1) % self.args["log_step"] == 0:
self.logger.info(
f"Train Epoch {epoch}: {batch_idx + 1}/{len(dataloader)} Loss: {loss.item():.6f}"
)
# 更新 tqdm 的进度
pbar.update(1)
pbar.set_postfix(loss=loss.item())
avg_loss = total_loss / len(dataloader)
self.logger.info(
f"{mode.capitalize()} Epoch {epoch}: average Loss: {avg_loss:.6f}, time: {time.time() - epoch_time:.2f} s"
)
# 记录内存
self.stats.record_memory_usage()
return avg_loss
def train_epoch(self, epoch):
return self._run_epoch(epoch, self.train_loader, "train")
def val_epoch(self, epoch):
return self._run_epoch(epoch, self.val_loader or self.test_loader, "val")
def test_epoch(self, epoch):
return self._run_epoch(epoch, self.test_loader, "test")
def train(self):
best_model, best_test_model = None, None
best_loss, best_test_loss = float("inf"), float("inf")
not_improved_count = 0
self.stats.start_training()
self.logger.info("Training process started")
for epoch in range(1, self.args["epochs"] + 1):
train_epoch_loss = self.train_epoch(epoch)
val_epoch_loss = self.val_epoch(epoch)
test_epoch_loss = self.test_epoch(epoch)
if train_epoch_loss > 1e6:
self.logger.warning("Gradient explosion detected. Ending...")
break
if val_epoch_loss < best_loss:
best_loss = val_epoch_loss
not_improved_count = 0
best_model = copy.deepcopy(self.model.state_dict())
self.logger.info("Best validation model saved!")
else:
not_improved_count += 1
if (
self.args["early_stop"]
and not_improved_count == self.args["early_stop_patience"]
):
self.logger.info(
f"Validation performance didn't improve for {self.args['early_stop_patience']} epochs. Training stops."
)
break
if test_epoch_loss < best_test_loss:
best_test_loss = test_epoch_loss
best_test_model = copy.deepcopy(self.model.state_dict())
if not self.args["debug"]:
torch.save(best_model, self.best_path)
torch.save(best_test_model, self.best_test_path)
self.logger.info(
f"Best models saved at {self.best_path} and {self.best_test_path}"
)
# 输出统计与参数
self.stats.end_training()
self.stats.report(self.logger)
try:
total_params = sum(
p.numel() for p in self.model.parameters() if p.requires_grad
)
self.logger.info(f"Trainable params: {total_params}")
except Exception:
pass
self._finalize_training(best_model, best_test_model)
def _finalize_training(self, best_model, best_test_model):
self.model.load_state_dict(best_model)
self.logger.info("Testing on best validation model")
self.test(self.model, self.args, self.test_loader, self.scaler, self.logger)
self.model.load_state_dict(best_test_model)
self.logger.info("Testing on best test model")
self.test(self.model, self.args, self.test_loader, self.scaler, self.logger)
@staticmethod
def test(model, args, data_loader, scaler, logger, path=None):
if path:
checkpoint = torch.load(path)
model.load_state_dict(checkpoint["state_dict"])
model.to(args["device"])
model.eval()
y_pred, y_true = [], []
with torch.no_grad():
for data, target in data_loader:
label = target[..., : args["output_dim"]]
output = model(data)
y_pred.append(output)
y_true.append(label)
if args["real_value"]:
y_pred = scaler.inverse_transform(torch.cat(y_pred, dim=0))
else:
y_pred = torch.cat(y_pred, dim=0)
y_true = torch.cat(y_true, dim=0)
# 你在这里需要把y_pred和y_true保存下来
# torch.save(y_pred, "./test/PEMS07/y_pred_D.pt") # [3566,12,170,1]
# torch.save(y_true, "./test/PEMS08/y_true.pt") # [3566,12,170,1]
for t in range(y_true.shape[1]):
mae, rmse, mape = all_metrics(
y_pred[:, t, ...],
y_true[:, t, ...],
args["mae_thresh"],
args["mape_thresh"],
)
logger.info(
f"Horizon {t + 1:02d}, MAE: {mae:.4f}, RMSE: {rmse:.4f}, MAPE: {mape:.4f}"
)
mae, rmse, mape = all_metrics(
y_pred, y_true, args["mae_thresh"], args["mape_thresh"]
)
logger.info(
f"Average Horizon, MAE: {mae:.4f}, RMSE: {rmse:.4f}, MAPE: {mape:.4f}"
)
@staticmethod
def _compute_sampling_threshold(global_step, k):
return k / (k + math.exp(global_step / k))