Fixed bugs with refactoring
This commit is contained in:
parent
2b8d5e6b31
commit
20c6aa5862
|
|
@ -67,7 +67,6 @@ class DecoderModel(nn.Module, Seq2SeqAttrs):
|
||||||
nn.Module.__init__(self)
|
nn.Module.__init__(self)
|
||||||
Seq2SeqAttrs.__init__(self, adj_mx, **model_kwargs)
|
Seq2SeqAttrs.__init__(self, adj_mx, **model_kwargs)
|
||||||
self.output_dim = int(model_kwargs.get('output_dim', 1))
|
self.output_dim = int(model_kwargs.get('output_dim', 1))
|
||||||
self.use_curriculum_learning = bool(model_kwargs.get('use_curriculum_learning', False))
|
|
||||||
self.horizon = int(model_kwargs.get('horizon', 1)) # for the decoder
|
self.horizon = int(model_kwargs.get('horizon', 1)) # for the decoder
|
||||||
self.projection_layer = nn.Linear(self.hidden_state_size, self.num_nodes * self.output_dim)
|
self.projection_layer = nn.Linear(self.hidden_state_size, self.num_nodes * self.output_dim)
|
||||||
self.dcgru_layers = nn.ModuleList([nn.GRUCell(input_size=self.num_nodes * self.output_dim,
|
self.dcgru_layers = nn.ModuleList([nn.GRUCell(input_size=self.num_nodes * self.output_dim,
|
||||||
|
|
@ -105,8 +104,14 @@ class DCRNNModel(nn.Module, Seq2SeqAttrs):
|
||||||
Seq2SeqAttrs.__init__(self, adj_mx, **model_kwargs)
|
Seq2SeqAttrs.__init__(self, adj_mx, **model_kwargs)
|
||||||
self.encoder_model = EncoderModel(adj_mx, **model_kwargs)
|
self.encoder_model = EncoderModel(adj_mx, **model_kwargs)
|
||||||
self.decoder_model = DecoderModel(adj_mx, **model_kwargs)
|
self.decoder_model = DecoderModel(adj_mx, **model_kwargs)
|
||||||
|
self.cl_decay_steps = int(model_kwargs.get('cl_decay_steps', 1000))
|
||||||
|
self.use_curriculum_learning = bool(model_kwargs.get('use_curriculum_learning', False))
|
||||||
self._logger = logger
|
self._logger = logger
|
||||||
|
|
||||||
|
def _compute_sampling_threshold(self, batches_seen):
|
||||||
|
return self.cl_decay_steps / (
|
||||||
|
self.cl_decay_steps + np.exp(batches_seen / self.cl_decay_steps))
|
||||||
|
|
||||||
def encoder(self, inputs):
|
def encoder(self, inputs):
|
||||||
"""
|
"""
|
||||||
encoder forward pass on t time steps
|
encoder forward pass on t time steps
|
||||||
|
|
@ -128,7 +133,7 @@ class DCRNNModel(nn.Module, Seq2SeqAttrs):
|
||||||
:return: output: (self.horizon, batch_size, self.num_nodes * self.output_dim)
|
:return: output: (self.horizon, batch_size, self.num_nodes * self.output_dim)
|
||||||
"""
|
"""
|
||||||
batch_size = encoder_hidden_state.size(1)
|
batch_size = encoder_hidden_state.size(1)
|
||||||
go_symbol = torch.zeros((batch_size, self.num_nodes * self.output_dim))
|
go_symbol = torch.zeros((batch_size, self.num_nodes * self.decoder_model.output_dim))
|
||||||
decoder_hidden_state = encoder_hidden_state
|
decoder_hidden_state = encoder_hidden_state
|
||||||
decoder_input = go_symbol
|
decoder_input = go_symbol
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -32,7 +32,6 @@ class DCRNNSupervisor:
|
||||||
self.input_dim = int(self._model_kwargs.get('input_dim', 1))
|
self.input_dim = int(self._model_kwargs.get('input_dim', 1))
|
||||||
self.seq_len = int(self._model_kwargs.get('seq_len')) # for the encoder
|
self.seq_len = int(self._model_kwargs.get('seq_len')) # for the encoder
|
||||||
self.output_dim = int(self._model_kwargs.get('output_dim', 1))
|
self.output_dim = int(self._model_kwargs.get('output_dim', 1))
|
||||||
self.cl_decay_steps = int(self._model_kwargs.get('cl_decay_steps', 1000))
|
|
||||||
self.use_curriculum_learning = bool(
|
self.use_curriculum_learning = bool(
|
||||||
self._model_kwargs.get('use_curriculum_learning', False))
|
self._model_kwargs.get('use_curriculum_learning', False))
|
||||||
self.horizon = int(self._model_kwargs.get('horizon', 1)) # for the decoder
|
self.horizon = int(self._model_kwargs.get('horizon', 1)) # for the decoder
|
||||||
|
|
@ -94,7 +93,7 @@ class DCRNNSupervisor:
|
||||||
x, y = self._get_x_y(x, y)
|
x, y = self._get_x_y(x, y)
|
||||||
x, y = self._get_x_y_in_correct_dims(x, y)
|
x, y = self._get_x_y_in_correct_dims(x, y)
|
||||||
|
|
||||||
output = self.dcrnn_model(x, y)
|
output = self.dcrnn_model(x, y, batches_seen)
|
||||||
loss = self._compute_loss(y, output, criterion)
|
loss = self._compute_loss(y, output, criterion)
|
||||||
self._logger.info(loss.item())
|
self._logger.info(loss.item())
|
||||||
losses.append(loss.item())
|
losses.append(loss.item())
|
||||||
|
|
@ -143,10 +142,6 @@ class DCRNNSupervisor:
|
||||||
self.num_nodes * self.output_dim)
|
self.num_nodes * self.output_dim)
|
||||||
return x, y
|
return x, y
|
||||||
|
|
||||||
def _compute_sampling_threshold(self, batches_seen):
|
|
||||||
return self.cl_decay_steps / (
|
|
||||||
self.cl_decay_steps + np.exp(batches_seen / self.cl_decay_steps))
|
|
||||||
|
|
||||||
def _compute_loss(self, y_true, y_predicted, criterion):
|
def _compute_loss(self, y_true, y_predicted, criterion):
|
||||||
loss = 0
|
loss = 0
|
||||||
for t in range(self.horizon):
|
for t in range(self.horizon):
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue