Implemented encoder using GRUCell instead so that it's easier to swap that with DCGRUCell
This commit is contained in:
parent
66fb202d21
commit
6386ac7eb4
|
|
@ -30,12 +30,44 @@ class EncoderModel(DCRNNModel):
|
|||
|
||||
# https://pytorch.org/docs/stable/nn.html#gru
|
||||
|
||||
# since input shape is Input (batch_size, timesteps, num_sensor*input_dim),batch_first=True
|
||||
self.dcgru = nn.GRU(input_size=self.num_nodes * self.input_dim,
|
||||
hidden_size=self.rnn_units,
|
||||
num_layers=self.num_rnn_layers,
|
||||
batch_first=True)
|
||||
# input shape is supposed to be Input (batch_size, timesteps, num_sensor*input_dim)
|
||||
# first layer takes input shape and subsequent layer take input from the first layer
|
||||
self.dcgru_layers = [nn.GRUCell(input_size=self.num_nodes * self.input_dim,
|
||||
hidden_size=self.rnn_units,
|
||||
bias=True)] + [nn.GRUCell(input_size=self.rnn_units,
|
||||
hidden_size=self.rnn_units,
|
||||
bias=True) for _ in
|
||||
range(self.num_rnn_layers - 1)]
|
||||
|
||||
def forward(self, inputs, hidden_state=None):
|
||||
# is None okay?
|
||||
return self.dcgru(inputs, hidden_state)
|
||||
"""
|
||||
Encoder forward pass.
|
||||
|
||||
:param inputs: shape (batch_size, timesteps, num_sensor*input_dim)
|
||||
:param hidden_state: (num_layers, batch_size, rnn_units) -> optional, zeros if not provided
|
||||
:return: output, hidden_state
|
||||
"""
|
||||
layer_input = inputs.permute(1, 0, 2) # first axis is now timesteps
|
||||
if hidden_state is None:
|
||||
batch_size = inputs.size()[0]
|
||||
hidden_state = torch.zeros((self.num_rnn_layers, batch_size, self.rnn_units),
|
||||
device=device)
|
||||
hidden = torch.empty_like(hidden_state)
|
||||
for layer_num, dcgru_layer in enumerate(self.dcgru_layers):
|
||||
layer_states = self._forward_layer(layer_input, dcgru_layer, hidden_state[layer_num])
|
||||
# append last time step's hidden state
|
||||
hidden[layer_num] = layer_states[-1]
|
||||
layer_input = layer_states
|
||||
|
||||
output = layer_input # last layer's output
|
||||
return output, hidden
|
||||
|
||||
@staticmethod
|
||||
def _forward_layer(inputs, dcgru_layer, hidden_state):
|
||||
# inputs shape = (timesteps, batch_size, input_size)
|
||||
outputs = [] # shape (timesteps, batch_size, self.rnn_units)
|
||||
for cell_input in inputs[:, ]:
|
||||
hidden_state = dcgru_layer(cell_input, hidden_state)
|
||||
outputs.append(hidden_state)
|
||||
|
||||
return torch.cat(outputs, dim=1) # runs in O(timesteps) not too slow
|
||||
|
|
|
|||
Loading…
Reference in New Issue