Implemented encoder using GRUCell instead so that it's easier to swap that with DCGRUCell

This commit is contained in:
Chintan Shah 2019-09-29 17:40:52 -04:00
parent 66fb202d21
commit 6386ac7eb4
1 changed files with 39 additions and 7 deletions

View File

@ -30,12 +30,44 @@ class EncoderModel(DCRNNModel):
# https://pytorch.org/docs/stable/nn.html#gru
# since input shape is Input (batch_size, timesteps, num_sensor*input_dim),batch_first=True
self.dcgru = nn.GRU(input_size=self.num_nodes * self.input_dim,
hidden_size=self.rnn_units,
num_layers=self.num_rnn_layers,
batch_first=True)
# input shape is supposed to be Input (batch_size, timesteps, num_sensor*input_dim)
# first layer takes input shape and subsequent layer take input from the first layer
self.dcgru_layers = [nn.GRUCell(input_size=self.num_nodes * self.input_dim,
hidden_size=self.rnn_units,
bias=True)] + [nn.GRUCell(input_size=self.rnn_units,
hidden_size=self.rnn_units,
bias=True) for _ in
range(self.num_rnn_layers - 1)]
def forward(self, inputs, hidden_state=None):
# is None okay?
return self.dcgru(inputs, hidden_state)
"""
Encoder forward pass.
:param inputs: shape (batch_size, timesteps, num_sensor*input_dim)
:param hidden_state: (num_layers, batch_size, rnn_units) -> optional, zeros if not provided
:return: output, hidden_state
"""
layer_input = inputs.permute(1, 0, 2) # first axis is now timesteps
if hidden_state is None:
batch_size = inputs.size()[0]
hidden_state = torch.zeros((self.num_rnn_layers, batch_size, self.rnn_units),
device=device)
hidden = torch.empty_like(hidden_state)
for layer_num, dcgru_layer in enumerate(self.dcgru_layers):
layer_states = self._forward_layer(layer_input, dcgru_layer, hidden_state[layer_num])
# append last time step's hidden state
hidden[layer_num] = layer_states[-1]
layer_input = layer_states
output = layer_input # last layer's output
return output, hidden
@staticmethod
def _forward_layer(inputs, dcgru_layer, hidden_state):
# inputs shape = (timesteps, batch_size, input_size)
outputs = [] # shape (timesteps, batch_size, self.rnn_units)
for cell_input in inputs[:, ]:
hidden_state = dcgru_layer(cell_input, hidden_state)
outputs.append(hidden_state)
return torch.cat(outputs, dim=1) # runs in O(timesteps) not too slow