DCRNN/model/pytorch/dcrnn_model.py

74 lines
3.6 KiB
Python

import torch
import torch.nn as nn
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class DCRNNModel(nn.Module):
def __init__(self, is_training, scale_factor, adj_mx, **model_kwargs):
super().__init__()
self.adj_mx = adj_mx
self.is_training = is_training
self.scale_factor = scale_factor
self.max_diffusion_step = int(model_kwargs.get('max_diffusion_step', 2))
self.cl_decay_steps = int(model_kwargs.get('cl_decay_steps', 1000))
self.filter_type = model_kwargs.get('filter_type', 'laplacian')
self.horizon = int(model_kwargs.get('horizon', 1)) # for the decoder
# self.max_grad_norm = float(model_kwargs.get('max_grad_norm', 5.0))
self.num_nodes = int(model_kwargs.get('num_nodes', 1))
self.num_rnn_layers = int(model_kwargs.get('num_rnn_layers', 1))
self.rnn_units = int(model_kwargs.get('rnn_units'))
self.seq_len = int(model_kwargs.get('seq_len')) # for the encoder
self.use_curriculum_learning = bool(model_kwargs.get('use_curriculum_learning', False))
self.input_dim = int(model_kwargs.get('input_dim', 1))
self.output_dim = int(model_kwargs.get('output_dim', 1))
class EncoderModel(DCRNNModel):
def __init__(self, is_training, scaler, adj_mx, **model_kwargs):
super().__init__(is_training, scaler, adj_mx, **model_kwargs)
# https://pytorch.org/docs/stable/nn.html#gru
# input shape is supposed to be Input (batch_size, timesteps, num_sensor*input_dim)
# first layer takes input shape and subsequent layer take input from the first layer
self.dcgru_layers = [nn.GRUCell(input_size=self.num_nodes * self.input_dim,
hidden_size=self.rnn_units,
bias=True)] + [nn.GRUCell(input_size=self.rnn_units,
hidden_size=self.rnn_units,
bias=True) for _ in
range(self.num_rnn_layers - 1)]
def forward(self, inputs, hidden_state=None):
"""
Encoder forward pass.
:param inputs: shape (batch_size, timesteps, num_sensor*input_dim)
:param hidden_state: (num_layers, batch_size, rnn_units) -> optional, zeros if not provided
:return: output, hidden_state
"""
layer_input = inputs.permute(1, 0, 2) # first axis is now timesteps
if hidden_state is None:
batch_size = inputs.size()[0]
hidden_state = torch.zeros((self.num_rnn_layers, batch_size, self.rnn_units),
device=device)
hidden = torch.empty_like(hidden_state)
for layer_num, dcgru_layer in enumerate(self.dcgru_layers):
layer_states = self._forward_layer(layer_input, dcgru_layer, hidden_state[layer_num])
# append last time step's hidden state
hidden[layer_num] = layer_states[-1]
layer_input = layer_states
output = layer_input # last layer's output
return output, hidden
@staticmethod
def _forward_layer(inputs, dcgru_layer, hidden_state):
# inputs shape = (timesteps, batch_size, input_size)
outputs = [] # shape (timesteps, batch_size, self.rnn_units)
for cell_input in inputs[:, ]:
hidden_state = dcgru_layer(cell_input, hidden_state)
outputs.append(hidden_state)
return torch.cat(outputs, dim=1) # runs in O(timesteps) not too slow