Implemented single batch forward pass

This commit is contained in:
Chintan Shah 2019-10-01 22:47:59 -04:00
parent 69288460b1
commit 86c4c5704d
2 changed files with 85 additions and 1 deletions

View File

@ -17,7 +17,6 @@ class DCRNNModel:
self.num_nodes = int(model_kwargs.get('num_nodes', 1)) self.num_nodes = int(model_kwargs.get('num_nodes', 1))
self.num_rnn_layers = int(model_kwargs.get('num_rnn_layers', 1)) self.num_rnn_layers = int(model_kwargs.get('num_rnn_layers', 1))
self.rnn_units = int(model_kwargs.get('rnn_units')) self.rnn_units = int(model_kwargs.get('rnn_units'))
self.input_dim = int(model_kwargs.get('input_dim', 1))
self.hidden_state_size = self.num_nodes * self.rnn_units self.hidden_state_size = self.num_nodes * self.rnn_units
@ -25,6 +24,7 @@ class EncoderModel(nn.Module, DCRNNModel):
def __init__(self, is_training, scaler, adj_mx, **model_kwargs): def __init__(self, is_training, scaler, adj_mx, **model_kwargs):
super().__init__(is_training, scaler, adj_mx, **model_kwargs) super().__init__(is_training, scaler, adj_mx, **model_kwargs)
# https://pytorch.org/docs/stable/nn.html#gru # https://pytorch.org/docs/stable/nn.html#gru
self.input_dim = int(model_kwargs.get('input_dim', 1))
self.seq_len = int(model_kwargs.get('seq_len')) # for the encoder self.seq_len = int(model_kwargs.get('seq_len')) # for the encoder
@property @property

View File

@ -0,0 +1,84 @@
import numpy as np
import torch
from model.pytorch.dcrnn_model import EncoderModel, DecoderModel
class DCRNNSupervisor:
def __init__(self, adj_mx, **kwargs):
self._kwargs = kwargs
self._data_kwargs = kwargs.get('data')
self._model_kwargs = kwargs.get('model')
self._train_kwargs = kwargs.get('train')
self.num_nodes = int(self._model_kwargs.get('num_nodes', 1))
self.input_dim = int(self._model_kwargs.get('input_dim', 1))
self.seq_len = int(self._model_kwargs.get('seq_len')) # for the encoder
self.output_dim = int(self._model_kwargs.get('output_dim', 1))
self.use_curriculum_learning = bool(
self._model_kwargs.get('use_curriculum_learning', False))
self.horizon = int(self._model_kwargs.get('horizon', 1)) # for the decoder
def train(self, encoder_model: EncoderModel, decoder_model: DecoderModel, **kwargs):
kwargs.update(self._train_kwargs)
return self._train(**kwargs)
def _train_one_batch(self, inputs, labels, encoder_model: EncoderModel,
decoder_model: DecoderModel, encoder_optimizer,
decoder_optimizer, criterion):
"""
:param inputs: shape (seq_len, batch_size, num_sensor, input_dim)
:param labels: shape (horizon, batch_size, num_sensor, input_dim)
:param encoder_model:
:param decoder_model:
:param encoder_optimizer:
:param decoder_optimizer:
:param criterion: minimize this criterion
:return: loss?
"""
encoder_optimizer.zero_grad()
decoder_optimizer.zero_grad()
batch_size = inputs.size(1)
inputs = inputs.view(self.seq_len, batch_size, self.num_nodes * self.input_dim)
labels = labels.view(self.horizon, batch_size, self.num_nodes * self.output_dim)
loss = 0
encoder_hidden_state = None
for t in range(self.seq_len):
_, encoder_hidden_state = encoder_model.forward(inputs[t], encoder_hidden_state)
go_symbol = torch.zeros((batch_size, self.num_nodes * self.output_dim))
decoder_hidden_state = encoder_hidden_state
decoder_input = go_symbol
for t in range(self.horizon):
decoder_output, decoder_hidden_state = decoder_model.forward(decoder_input,
decoder_hidden_state)
decoder_input = decoder_output
if self.use_curriculum_learning: # todo check for is_training (pytorch way?)
c = np.random.uniform(0, 1)
if c < self._compute_sampling_threshold():
decoder_input = labels[t]
loss += criterion(decoder_output, labels[t])
loss.backward()
encoder_optimizer.step()
decoder_optimizer.step()
return loss.item()
def _train(self, encoder_model: EncoderModel, decoder_model: DecoderModel, base_lr, epoch,
steps, patience=50, epochs=100,
min_learning_rate=2e-6, lr_decay_ratio=0.1, save_model=1,
test_every_n_epochs=10):
pass
def _compute_sampling_threshold(self):
return 1.0 # todo