Added dcrnn_cell

This commit is contained in:
Chintan Shah 2019-10-06 11:55:02 -04:00
parent e80c47390d
commit b65df994e4
1 changed files with 12 additions and 30 deletions

View File

@ -1,17 +1,14 @@
from typing import Optional
import torch import torch
from torch import Tensor
from lib import utils from lib import utils
class LayerParams: class LayerParams:
def __init__(self, rnn_network: torch.nn.RNN, type: str): def __init__(self, rnn_network: torch.nn.Module, layer_type: str):
self._rnn_network = rnn_network self._rnn_network = rnn_network
self._params_dict = {} self._params_dict = {}
self._biases_dict = {} self._biases_dict = {}
self._type = type self._type = layer_type
def get_weights(self, shape): def get_weights(self, shape):
if shape not in self._params_dict: if shape not in self._params_dict:
@ -31,32 +28,24 @@ class LayerParams:
return self._biases_dict[length] return self._biases_dict[length]
class DCGRUCell(torch.nn.RNN): class DCGRUCell(torch.nn.Module):
def __init__(self, num_units, adj_mx, max_diffusion_step, num_nodes, input_size: int, def __init__(self, num_units, adj_mx, max_diffusion_step, num_nodes, nonlinearity='tanh',
hidden_size: int, filter_type="laplacian", use_gc_for_ru=True):
num_layers: int = 1,
num_proj=None,
nonlinearity='tanh', filter_type="laplacian", use_gc_for_ru=True):
""" """
:param num_units: :param num_units:
:param adj_mx: :param adj_mx:
:param max_diffusion_step: :param max_diffusion_step:
:param num_nodes: :param num_nodes:
:param input_size:
:param num_proj:
:param nonlinearity: :param nonlinearity:
:param filter_type: "laplacian", "random_walk", "dual_random_walk". :param filter_type: "laplacian", "random_walk", "dual_random_walk".
:param use_gc_for_ru: whether to use Graph convolution to calculate the reset and update gates. :param use_gc_for_ru: whether to use Graph convolution to calculate the reset and update gates.
""" """
super(DCGRUCell, self).__init__(input_size, hidden_size, bias=True,
# bias param does not exist in tf code? super().__init__()
num_layers=num_layers,
nonlinearity=nonlinearity)
self._activation = torch.tanh if nonlinearity == 'tanh' else torch.relu self._activation = torch.tanh if nonlinearity == 'tanh' else torch.relu
# support other nonlinearities up here? # support other nonlinearities up here?
self._num_nodes = num_nodes self._num_nodes = num_nodes
self._num_proj = num_proj
self._num_units = num_units self._num_units = num_units
self._max_diffusion_step = max_diffusion_step self._max_diffusion_step = max_diffusion_step
self._supports = [] self._supports = []
@ -73,8 +62,6 @@ class DCGRUCell(torch.nn.RNN):
supports.append(utils.calculate_scaled_laplacian(adj_mx)) supports.append(utils.calculate_scaled_laplacian(adj_mx))
for support in supports: for support in supports:
self._supports.append(self._build_sparse_matrix(support)) self._supports.append(self._build_sparse_matrix(support))
self._proj_weights = torch.nn.Parameter(torch.randn(self._num_units, self._num_proj))
self._fc_params = LayerParams(self, 'fc') self._fc_params = LayerParams(self, 'fc')
self._gconv_params = LayerParams(self, 'gconv') self._gconv_params = LayerParams(self, 'gconv')
@ -89,7 +76,7 @@ class DCGRUCell(torch.nn.RNN):
output_size = self._num_nodes * self._num_proj output_size = self._num_nodes * self._num_proj
return output_size return output_size
def forward(self, input: Tensor, hx: Optional[Tensor] = ...): def forward(self, inputs, hx):
"""Gated recurrent unit (GRU) with Graph Convolution. """Gated recurrent unit (GRU) with Graph Convolution.
:param input: (B, num_nodes * input_dim) :param input: (B, num_nodes * input_dim)
@ -104,23 +91,18 @@ class DCGRUCell(torch.nn.RNN):
fn = self._gconv fn = self._gconv
else: else:
fn = self._fc fn = self._fc
value = torch.sigmoid(fn(input, hx, output_size, bias_start=1.0)) value = torch.sigmoid(fn(inputs, hx, output_size, bias_start=1.0))
value = torch.reshape(value, (-1, self._num_nodes, output_size)) value = torch.reshape(value, (-1, self._num_nodes, output_size))
r, u = torch.split(tensor=value, split_size_or_sections=2, dim=-1) r, u = torch.split(tensor=value, split_size_or_sections=2, dim=-1)
r = torch.reshape(r, (-1, self._num_nodes * self._num_units)) r = torch.reshape(r, (-1, self._num_nodes * self._num_units))
u = torch.reshape(u, (-1, self._num_nodes * self._num_units)) u = torch.reshape(u, (-1, self._num_nodes * self._num_units))
c = self._gconv(input, r * hx, self._num_units) c = self._gconv(inputs, r * hx, self._num_units)
if self._activation is not None: if self._activation is not None:
c = self._activation(c) c = self._activation(c)
output = new_state = u * hx + (1 - u) * c new_state = u * hx + (1.0 - u) * c
if self._num_proj is not None: return new_state
batch_size = input.shape[0]
output = torch.reshape(new_state, shape=(-1, self._num_units))
output = torch.reshape(torch.matmul(output, self._proj_weights),
shape=(batch_size, self.output_size))
return output, new_state
@staticmethod @staticmethod
def _concat(x, x_): def _concat(x, x_):