44 lines
4.3 KiB
Markdown
44 lines
4.3 KiB
Markdown
# Incentive Mechanism in FL
|
|
|
|
## Survey
|
|
| Title | Venue | Link | Year
|
|
| ------------------------------------------------------------ | ---------- |---------------------------------------------|-----------|
|
|
| A Comprehensive Survey of Incentive Mechanism for Federated Learning | arxiv | [pdf](https://arxiv.org/pdf/2106.15406.pdf) | 2021 |
|
|
| A Survey of Incentive Mechanism Design for Federated Learning | IEEE Trans. Emerg. Top. Comput.| [pdf](https://ieeexplore.ieee.org/document/9369019) | 2022 |
|
|
|
|
## 2022
|
|
| Title | Venue | Link |
|
|
| ------------------------------------------------------------ | ---------- |---------------------------------------------|
|
|
| Tokenized Incentive for Federated Learning| AAAI | [pdf](https://federated-learning.org/fl-aaai-2022/Papers/FL-AAAI-22_paper_14.pdf) |
|
|
|
|
|
|
## 2021
|
|
| Title | Venue | Link |
|
|
| ------------------------------------------------------------ | ---------- |---------------------------------------------|
|
|
|One for One, or All for All: Equilibria and Optimality of Collaboration in Federated Learning | ICML | [pdf](http://proceedings.mlr.press/v139/blum21a/blum21a.pdf)|
|
|
|Optimality and Stability in Federated Learning: A Game-theoretic Approach|NeurIPS|[pdf](https://papers.neurips.cc/paper/2021/file/09a5e2a11bea20817477e0b1dfe2cc21-Paper.pdf)|
|
|
|Toward an Automated Auction Framework for Wireless Federated Learning Services Market|IEEE Trans. Mob. Comput|[pdf](https://arxiv.org/pdf/1912.06370.pdf)|
|
|
|FAIR: Quality-Aware Federated Learning with Precise User Incentive and Model Aggregation|INFOCOM|[pdf](https://www.cs.sjtu.edu.cn/~yichao/assets/publications/infocom21_deng.pdf)|
|
|
|DeepChain: Auditable and Privacy-Preserving Deep Learning with Blockchain-Based Incentive|TDSC|[pdf](https://eprint.iacr.org/2018/679.pdf)|
|
|
|An Incentive Mechanism for Cross-Silo Federated Learning: A Public Goods Perspective| INFOCOM | [pdf](https://people.ece.ubc.ca/vincentw/C/TW-INFOCOM-2021.pdf)|
|
|
|
|
## 2020
|
|
| Title | Venue | Link |
|
|
| ------------------------------------------------------------ | ---------- |---------------------------------------------|
|
|
|FMore: An Incentive Scheme of Multi-dimensional Auction for Federated Learning in MEC|ICDCS|[pdf](https://arxiv.org/pdf/2002.09699.pdf)|
|
|
|Federated Learning for Edge Networks: Resource Optimization and Incentive Mechanism |IEEE Commun. Mag.|[pdf](https://arxiv.org/pdf/1911.05642.pdf)|
|
|
|Motivating Workers in Federated Learning: A Stackelberg Game Perspective|IEEE Netw. Lett.|[pdf](https://arxiv.org/pdf/1908.03092.pdf)|
|
|
|A Learning-Based Incentive Mechanism for Federated Learning |IEEE Internet Things J.|[pdf](http://web-ext.u-aizu.ac.jp/~pengli/files/fl_incentive_iot.pdf)|
|
|
|A Crowdsourcing Framework for On-Device Federated Learning|IEEE Trans. Wirel. Commun.|[pdf](https://arxiv.org/pdf/1911.01046.pdf)|
|
|
|A Fairness-aware Incentive Scheme for Federated Learning|AIES |[pdf](https://dl.acm.org/doi/10.1145/3375627.3375840)|
|
|
|A Sustainable Incentive Scheme for Federated Learning| IEEE Intell. Syst|[pdf](https://ieeexplore.ieee.org/document/9069185)|
|
|
|Hierarchical Incentive Mechanism Design for Federated Machine Learning in Mobile Networks|IEEE Internet Things J|[pdf](https://ieeexplore.ieee.org/abstract/document/9057543)|
|
|
|
|
|
|
## 2019
|
|
| Title | Venue | Link |
|
|
| ------------------------------------------------------------ | ---------- |---------------------------------------------|
|
|
|Record and Reward Federated Learning Contributions with Blockchain|CyberC|[pdf](https://mblocklab.com/RecordandReward.pdf)|
|
|
|Incentive Design for Efficient Federated Learning in Mobile Networks: A Contract Theory Approach |APWCS|[pdf](https://arxiv.org/pdf/1905.07479.pdf)|
|
|
|Profit Allocation for Federated Learning|BigData|[pdf](https://hufudb.com/static/paper/2019/BigData2019_Profit%20Allocation%20for%20Federated%20Learning.pdf)|
|
|
|Measure Contribution of Participants in Federated Learning|BigData|[pdf](https://arxiv.org/pdf/1909.08525.pdf)| |