Compare commits

..

No commits in common. "STDEN" and "main" have entirely different histories.
STDEN ... main

3 changed files with 21 additions and 47 deletions

2
.gitignore vendored
View File

@ -168,8 +168,6 @@ STDEN/
models/gpt2/ models/gpt2/
pre-trained/ pre-trained/
# 注意models/STDEN/ 是代码目录,不应该被忽略
# 数据集文件类型屏蔽 # 数据集文件类型屏蔽
*.csv *.csv
*.npz *.npz

View File

@ -4,7 +4,7 @@ import torch.nn as nn
from models.STDEN import utils from models.STDEN import utils
# 移除全局device设置让模型自己决定设备 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class LayerParams: class LayerParams:
def __init__(self, rnn_network: nn.Module, layer_type: str): def __init__(self, rnn_network: nn.Module, layer_type: str):
@ -15,7 +15,7 @@ class LayerParams:
def get_weights(self, shape): def get_weights(self, shape):
if shape not in self._params_dict: if shape not in self._params_dict:
nn_param = nn.Parameter(torch.empty(*shape)) nn_param = nn.Parameter(torch.empty(*shape, device=device))
nn.init.xavier_normal_(nn_param) nn.init.xavier_normal_(nn_param)
self._params_dict[shape] = nn_param self._params_dict[shape] = nn_param
self._rnn_network.register_parameter('{}_weight_{}'.format(self._type, str(shape)), self._rnn_network.register_parameter('{}_weight_{}'.format(self._type, str(shape)),
@ -24,7 +24,7 @@ class LayerParams:
def get_biases(self, length, bias_start=0.0): def get_biases(self, length, bias_start=0.0):
if length not in self._biases_dict: if length not in self._biases_dict:
biases = nn.Parameter(torch.empty(length)) biases = nn.Parameter(torch.empty(length, device=device))
nn.init.constant_(biases, bias_start) nn.init.constant_(biases, bias_start)
self._biases_dict[length] = biases self._biases_dict[length] = biases
self._rnn_network.register_parameter('{}_biases_{}'.format(self._type, str(length)), self._rnn_network.register_parameter('{}_biases_{}'.format(self._type, str(length)),
@ -77,7 +77,7 @@ class ODEFunc(nn.Module):
indices = np.column_stack((L.row, L.col)) indices = np.column_stack((L.row, L.col))
# this is to ensure row-major ordering to equal torch.sparse.sparse_reorder(L) # this is to ensure row-major ordering to equal torch.sparse.sparse_reorder(L)
indices = indices[np.lexsort((indices[:, 0], indices[:, 1]))] indices = indices[np.lexsort((indices[:, 0], indices[:, 1]))]
L = torch.sparse_coo_tensor(indices.T, L.data.astype(np.float32), L.shape, dtype=torch.float32) L = torch.sparse_coo_tensor(indices.T, L.data, L.shape, device=device)
return L return L
def forward(self, t_local, y, backwards = False): def forward(self, t_local, y, backwards = False):

View File

@ -26,19 +26,6 @@ class STDENModel(nn.Module, EncoderAttrs):
adj_mx = load_graph(config) adj_mx = load_graph(config)
EncoderAttrs.__init__(self, config['model'], adj_mx) EncoderAttrs.__init__(self, config['model'], adj_mx)
# 输入输出维度配置
self.input_dim = int(config['model'].get('input_dim', 1))
self.output_dim = int(config['model'].get('output_dim', 1))
# Node到Edge的转换层
self.node_to_edge = nn.Linear(self.num_nodes * self.input_dim, self.num_edges * self.input_dim)
# Edge到Node的转换层
self.edge_to_node = nn.Linear(self.num_edges * self.output_dim, self.num_nodes * self.output_dim)
# 初始化转换层权重
utils.init_network_weights(self.node_to_edge)
utils.init_network_weights(self.edge_to_node)
# 识别网络 # 识别网络
self.encoder_z0 = Encoder_z0_RNN(config['model'], adj_mx) self.encoder_z0 = Encoder_z0_RNN(config['model'], adj_mx)
@ -76,20 +63,15 @@ class STDENModel(nn.Module, EncoderAttrs):
def forward(self, inputs, labels=None, batches_seen=None): def forward(self, inputs, labels=None, batches_seen=None):
""" """
seq2seq前向传播 seq2seq前向传播
:param inputs: (batch_size, seq_len, num_nodes, input_dim) - 节点格式输入 :param inputs: (seq_len, batch_size, num_edges * input_dim)
:param labels: (batch_size, horizon, num_nodes, output_dim) - 节点格式标签 :param labels: (horizon, batch_size, num_edges * output_dim)
:param batches_seen: 已见批次数量 :param batches_seen: 已见批次数量
:return: outputs: (batch_size, horizon, num_nodes, output_dim) - 节点格式输出 :return: outputs: (horizon, batch_size, num_edges * output_dim)
""" """
# 输入格式转换从node格式转换为edge格式
B, T, N, C = inputs.shape
inputs_node = inputs.view(T, B, N * C) # (T, B, N*C)
# 将node格式转换为edge格式
inputs_edge = self.node_to_edge(inputs_node) # (T, B, E*C)
# 编码初始潜在状态 # 编码初始潜在状态
first_point_mu, first_point_std = self.encoder_z0(inputs_edge) B, T, N, C = inputs.shape
inputs = inputs.view(T, B, N * C)
first_point_mu, first_point_std = self.encoder_z0(inputs)
# 采样轨迹 # 采样轨迹
means_z0 = first_point_mu.repeat(self.n_traj_samples, 1, 1) means_z0 = first_point_mu.repeat(self.n_traj_samples, 1, 1)
@ -105,16 +87,10 @@ class STDENModel(nn.Module, EncoderAttrs):
if self.save_latent: if self.save_latent:
self.latent_feat = torch.mean(sol_ys.detach(), axis=1) self.latent_feat = torch.mean(sol_ys.detach(), axis=1)
# 解码输出
outputs = self.decoder(sol_ys)
# 解码输出edge格式 outputs = outputs.view(B, T, N, C)
outputs_edge = self.decoder(sol_ys) # (horizon, B, E*output_dim)
# 将edge格式转换回node格式
outputs_node = self.edge_to_node(outputs_edge) # (horizon, B, N*output_dim)
# 重塑为最终输出格式
outputs = outputs_node.view(self.horizon, B, N, self.output_dim)
outputs = outputs.transpose(0, 1) # (B, horizon, N, output_dim)
return outputs, fe return outputs, fe
@ -152,17 +128,17 @@ class Encoder_z0_RNN(nn.Module, EncoderAttrs):
""" """
seq_len, batch_size = inputs.size(0), inputs.size(1) seq_len, batch_size = inputs.size(0), inputs.size(1)
# 重塑输入并处理 - 现在输入是edge格式 # 重塑输入并处理
inputs = inputs.reshape(seq_len, batch_size, self.num_edges, self.input_dim) inputs = inputs.reshape(seq_len, batch_size, self.num_nodes, self.input_dim)
inputs = inputs.reshape(seq_len, batch_size * self.num_edges, self.input_dim) inputs = inputs.reshape(seq_len, batch_size * self.num_nodes, self.input_dim)
# GRU处理 # GRU处理
outputs, _ = self.gru_rnn(inputs) outputs, _ = self.gru_rnn(inputs)
last_output = outputs[-1] last_output = outputs[-1]
# 重塑并转换维度 - 从edge格式转换回node格式 # 重塑并转换维度
last_output = torch.reshape(last_output, (batch_size, self.num_edges, -1)) last_output = torch.reshape(last_output, (batch_size, self.num_nodes, -1))
last_output = torch.transpose(last_output, -2, -1) last_output = torch.transpose(last_output, (-2, -1))
last_output = torch.matmul(last_output, self.inv_grad).transpose(-2, -1) last_output = torch.matmul(last_output, self.inv_grad).transpose(-2, -1)
# 生成均值和标准差 # 生成均值和标准差
@ -197,7 +173,7 @@ class Decoder(nn.Module):
outputs = torch.matmul(inputs, self.grap_grad) outputs = torch.matmul(inputs, self.grap_grad)
# 重塑并平均采样轨迹 # 重塑并平均采样轨迹
outputs = outputs.reshape(horizon, n_traj_samples, batch_size, latent_dim, self.num_edges, self.output_dim) outputs = outputs.reshape(horizon, n_traj_samples, batch_size, latent_dim, self.num_nodes, self.output_dim)
outputs = torch.mean(torch.mean(outputs, axis=3), axis=1) outputs = torch.mean(torch.mean(outputs, axis=3), axis=1)
outputs = outputs.reshape(horizon, batch_size, -1) outputs = outputs.reshape(horizon, batch_size, -1)