STDEN/README.md

57 lines
1.7 KiB
Markdown

# Spatio-Temporal Differential Equation Network
![STDEN framework](https://github.com/Echo-Ji/STDEN/blob/main/assets/framework.jpg)
This is a Pytroch implementation of Spatio-temporal Differential Equation Network (STDEN) for physics-guided traffic flow prediction, as described in our paper:
Jiahao Ji, Jingyuan Wang, Zhe Jiang, Jiawei Jiang, and Hu Zhang, **[STDEN: Towards Physics-guided Neural Networks for Traffic Flow Prediction](https://www.bigscity.com/publications/stden-towards-physics-guided-neural-networks-for-traffic-flow-prediction/)**, AAAI 2022.
The training framework of this project comes from [chnsh](https://github.com/chnsh/DCRNN_PyTorch). Thanks a lot :)
## Requirement
* scipy>=1.5.2
* numpy>=1.19.1
* pandas>=1.1.5
* pyyaml>=5.3.1
* pytorch>=1.7.1
* future>=0.18.2
* torchdiffeq>=0.2.0
Dependency can be installed using the following command:
```
pip install -r requirements.txt
```
## Model Traning and Evaluation
You can run the code by
```bash
# traning for dataset GT-221
python stden_train.py --config_filename=configs/stden_gt.yaml
# testing for dataset GT-221
python stden_eval.py --config_filename=configs/stden_gt.yaml
```
The configuration file of all datasets are as follows:
|dataset|config file|
|:--|:--|
|GT-221|stden_gt.yaml|
|WRS-393|stden_wrs.yaml|
|ZGC-564|stden_zgc.yaml|
Note the data is not public and I am not allowed to distribute it.
## Cite
If you find the paper usefule, please cite as following:
```tex
@inproceedings{ji2022stden,
title={STDEN: Towards Physics-guided Neural Networks for Traffic Flow Prediction},
author={Ji, Jiahao and Wang, Jingyuan and Jiang, Zhe and Jiang, Jiawei and Zhang, Hu},
booktitle={2022 AAAI Conference on Artificial Intelligence (AAAI'22)},
year={2022}
}
```