Compare commits
7 Commits
bacdce7c72
...
af795043c8
| Author | SHA1 | Date |
|---|---|---|
|
|
af795043c8 | |
|
|
bef30b9c2f | |
|
|
c15cf605be | |
|
|
5f8c31af2e | |
|
|
e826240a5e | |
|
|
97eb39073a | |
|
|
bc9a2667c2 |
|
|
@ -7,6 +7,7 @@ experiments/
|
|||
*.pkl
|
||||
data/
|
||||
pretrain/
|
||||
pre-train/
|
||||
|
||||
# ---> Python
|
||||
# Byte-compiled / optimized / DLL files
|
||||
|
|
|
|||
|
|
@ -0,0 +1,19 @@
|
|||
| NO. | Baselines | PEMS03 MAE | PEMS03 RMSE | PEMS03 MAPE | PEMS04 MAE | PEMS04 RMSE | PEMS04 MAPE | PEMS07 MAE | PEMS07 RMSE | PEMS07 MAPE | PEMS08 MAE | PEMS08 RMSE | PEMS08 MAPE | 备注 |
|
||||
|-----|----------------|------------|-------------|-------------|------------|-------------|-------------|------------|-------------|-------------|------------|-------------|-------------|--------|
|
||||
| 1 | HA | | | | | | | | | | | | | 未实现 |
|
||||
| 2 | ARIMA | 30.99 | 48.28 | 28.66% | 39.7 | 59.12 | 27.57% | / | / | / | 32.51 | 48.5 | 19.94% | 偏高 |
|
||||
| 3 | VAR | | | | | | | | | | | | | 未实现 |
|
||||
| 4 | FC-LSTM | | | | | | | | | | | | | 未实现 |
|
||||
| 5 | TCN | 29.51 | 45.79 | 29.11% | 37.6 | 55.5 | 26.81% | 42.6 | 62.19 | 20.22% | 31.18 | 45.8 | 20.64% | 偏高 |
|
||||
| 6 | GRU-ED | | | | | | | | | | | | | 未实现 |
|
||||
| 7 | DSANET | 21.26 | 34.44 | 21.18% | 27.77 | 43.89 | 18.88% | 31.59 | 49.42 | 13.93% | 22.38 | 35.48 | 14.26% | 合理 |
|
||||
| 8 | STGCN | 17.41 | 29.31 | 18.91% | 20.58 | 32.7 | 14.75% | 23.17 | 36.73 | 10.54% | 18.05 | 27.69 | 13.67% | 合理 |
|
||||
| 9 | DCRNN | 39.62 | 64.18 | 64.05% | 44.14 | 64.21 | 44.59% | 52.78 | 82.99 | 43.32% | 45.27 | 69.25 | 52.85% | 偏高 |
|
||||
| 10 | GraphWaveNet | 14.68 | 25.86 | 14.38% | 19.19 | 31.04 | 13.06% | 20.40 | 33.48 | 8.73% | 14.83 | 23.86 | 10.14% | 偏低 |
|
||||
| 11 | STSGCN | 18.41 | 30.77 | 19.28% | 21.4 | 35.04 | 14.28% | 24.47 | 38.96 | 10.77% | 17.58 | 27.19 | 12.00% | 合理 |
|
||||
| 12 | AGCRN | 15.21 | 26.52 | 14.71% | 19.28 | 31.35 | 12.98% | 20.46 | 33.79 | 8.70% | 15.76 | 25.23 | 10.25% | 合理 |
|
||||
| 13 | STFGNN | 17.29 | 29.56 | 17.48% | 23.06 | 36.23 | 15.52% | 24.67 | 38.93 | 10.89% | 16.87 | 27.48 | 11.16% | 合理 |
|
||||
| 14 | STGODE | 16.55 | 26.62 | 17.58% | 22.55 | 35.05 | 15.91% | 23.28 | 26.19 | 10.97% | 17.22 | 26.66 | 11.52% | 合理 |
|
||||
| 15 | STG-NCDE | 16.09 | 26.78 | 16.58% | 19.82 | 31.71 | 13.21% | 22.54 | 35.44 | 9.85% | 15.85 | 25.05 | 10.19% | 合理 |
|
||||
| 16 | DDGCRN | 14.51 | 24.83 | 14.51% | 18.34 | 30.77 | 12.17% | 19.68 | 33.40 | 8.23% | 14.39 | 23.75 | 9.42% | 偏低 |
|
||||
| 17 | TWDGCN | 14.65 | 24.84 | 14.66% | 18.54 | 30.53 | 12.29% | 20.01 | 33.62 | 8.50% | 14.65 | 24.19 | 9.51% | 偏高 |
|
||||
|
|
@ -0,0 +1,48 @@
|
|||
data:
|
||||
num_nodes: 358
|
||||
lag: 12
|
||||
horizon: 12
|
||||
val_ratio: 0.2
|
||||
test_ratio: 0.2
|
||||
tod: False
|
||||
normalizer: std
|
||||
column_wise: False
|
||||
default_graph: True
|
||||
add_time_in_day: True
|
||||
add_day_in_week: True
|
||||
steps_per_day: 288
|
||||
days_per_week: 7
|
||||
|
||||
model:
|
||||
input_dim: 3
|
||||
output_dim: 1
|
||||
history: 12
|
||||
horizon: 12
|
||||
granularity: 288
|
||||
dropout: 0.1
|
||||
channels: 32
|
||||
|
||||
|
||||
train:
|
||||
loss_func: mae
|
||||
seed: 10
|
||||
batch_size: 64
|
||||
epochs: 300
|
||||
lr_init: 0.003
|
||||
weight_decay: 0
|
||||
lr_decay: False
|
||||
lr_decay_rate: 0.3
|
||||
lr_decay_step: "5,20,40,70"
|
||||
early_stop: True
|
||||
early_stop_patience: 15
|
||||
grad_norm: False
|
||||
max_grad_norm: 5
|
||||
real_value: True
|
||||
|
||||
test:
|
||||
mae_thresh: null
|
||||
mape_thresh: 0.0
|
||||
|
||||
log:
|
||||
log_step: 200
|
||||
plot: False
|
||||
|
|
@ -0,0 +1,48 @@
|
|||
data:
|
||||
num_nodes: 307
|
||||
lag: 12
|
||||
horizon: 12
|
||||
val_ratio: 0.2
|
||||
test_ratio: 0.2
|
||||
tod: False
|
||||
normalizer: std
|
||||
column_wise: False
|
||||
default_graph: True
|
||||
add_time_in_day: True
|
||||
add_day_in_week: True
|
||||
steps_per_day: 288
|
||||
days_per_week: 7
|
||||
|
||||
model:
|
||||
input_dim: 3
|
||||
output_dim: 1
|
||||
history: 12
|
||||
horizon: 12
|
||||
granularity: 288
|
||||
dropout: 0.1
|
||||
channels: 64
|
||||
|
||||
|
||||
train:
|
||||
loss_func: mae
|
||||
seed: 10
|
||||
batch_size: 64
|
||||
epochs: 300
|
||||
lr_init: 0.003
|
||||
weight_decay: 0
|
||||
lr_decay: False
|
||||
lr_decay_rate: 0.3
|
||||
lr_decay_step: "5,20,40,70"
|
||||
early_stop: True
|
||||
early_stop_patience: 15
|
||||
grad_norm: False
|
||||
max_grad_norm: 5
|
||||
real_value: True
|
||||
|
||||
test:
|
||||
mae_thresh: null
|
||||
mape_thresh: 0.0
|
||||
|
||||
log:
|
||||
log_step: 200
|
||||
plot: False
|
||||
|
|
@ -0,0 +1,48 @@
|
|||
data:
|
||||
num_nodes: 883
|
||||
lag: 12
|
||||
horizon: 12
|
||||
val_ratio: 0.2
|
||||
test_ratio: 0.2
|
||||
tod: False
|
||||
normalizer: std
|
||||
column_wise: False
|
||||
default_graph: True
|
||||
add_time_in_day: True
|
||||
add_day_in_week: True
|
||||
steps_per_day: 288
|
||||
days_per_week: 7
|
||||
|
||||
model:
|
||||
input_dim: 3
|
||||
output_dim: 1
|
||||
history: 12
|
||||
horizon: 12
|
||||
granularity: 288
|
||||
dropout: 0.1
|
||||
channels: 128
|
||||
|
||||
|
||||
train:
|
||||
loss_func: mae
|
||||
seed: 10
|
||||
batch_size: 16
|
||||
epochs: 300
|
||||
lr_init: 0.003
|
||||
weight_decay: 0
|
||||
lr_decay: False
|
||||
lr_decay_rate: 0.3
|
||||
lr_decay_step: "5,20,40,70"
|
||||
early_stop: True
|
||||
early_stop_patience: 15
|
||||
grad_norm: False
|
||||
max_grad_norm: 5
|
||||
real_value: True
|
||||
|
||||
test:
|
||||
mae_thresh: null
|
||||
mape_thresh: 0.0
|
||||
|
||||
log:
|
||||
log_step: 200
|
||||
plot: False
|
||||
|
|
@ -0,0 +1,48 @@
|
|||
data:
|
||||
num_nodes: 170
|
||||
lag: 12
|
||||
horizon: 12
|
||||
val_ratio: 0.2
|
||||
test_ratio: 0.2
|
||||
tod: False
|
||||
normalizer: std
|
||||
column_wise: False
|
||||
default_graph: True
|
||||
add_time_in_day: True
|
||||
add_day_in_week: True
|
||||
steps_per_day: 288
|
||||
days_per_week: 7
|
||||
|
||||
model:
|
||||
input_dim: 3
|
||||
output_dim: 1
|
||||
history: 12
|
||||
horizon: 12
|
||||
granularity: 288
|
||||
dropout: 0.1
|
||||
channels: 96
|
||||
|
||||
|
||||
train:
|
||||
loss_func: mae
|
||||
seed: 10
|
||||
batch_size: 64
|
||||
epochs: 300
|
||||
lr_init: 0.003
|
||||
weight_decay: 0
|
||||
lr_decay: False
|
||||
lr_decay_rate: 0.3
|
||||
lr_decay_step: "5,20,40,70"
|
||||
early_stop: True
|
||||
early_stop_patience: 15
|
||||
grad_norm: False
|
||||
max_grad_norm: 5
|
||||
real_value: True
|
||||
|
||||
test:
|
||||
mae_thresh: null
|
||||
mape_thresh: 0.0
|
||||
|
||||
log:
|
||||
log_step: 200
|
||||
plot: False
|
||||
|
|
@ -0,0 +1,66 @@
|
|||
data:
|
||||
num_nodes: 358
|
||||
lag: 12
|
||||
horizon: 12
|
||||
val_ratio: 0.2
|
||||
test_ratio: 0.2
|
||||
tod: False
|
||||
normalizer: std
|
||||
column_wise: False
|
||||
default_graph: True
|
||||
add_time_in_day: True
|
||||
add_day_in_week: True
|
||||
steps_per_day: 288
|
||||
days_per_week: 7
|
||||
|
||||
model:
|
||||
input_dim: 1
|
||||
output_dim: 1
|
||||
input_window: 12
|
||||
output_window: 12
|
||||
gcn_true: true
|
||||
buildA_true: true
|
||||
gcn_depth: 2
|
||||
dropout: 0.3
|
||||
subgraph_size: 20
|
||||
node_dim: 40
|
||||
dilation_exponential: 1
|
||||
conv_channels: 32
|
||||
residual_channels: 32
|
||||
skip_channels: 64
|
||||
end_channels: 128
|
||||
layers: 3
|
||||
propalpha: 0.05
|
||||
tanhalpha: 3
|
||||
layer_norm_affline: true
|
||||
use_curriculum_learning: true
|
||||
step_size1: 2500
|
||||
task_level: 0
|
||||
num_split: 1
|
||||
step_size2: 100
|
||||
model_type: stmlp
|
||||
|
||||
train:
|
||||
loss_func: mae
|
||||
seed: 10
|
||||
batch_size: 64
|
||||
epochs: 300
|
||||
lr_init: 0.003
|
||||
weight_decay: 0
|
||||
lr_decay: False
|
||||
lr_decay_rate: 0.3
|
||||
lr_decay_step: "5,20,40,70"
|
||||
early_stop: True
|
||||
early_stop_patience: 15
|
||||
grad_norm: False
|
||||
max_grad_norm: 5
|
||||
real_value: True
|
||||
teacher_stu: True
|
||||
|
||||
test:
|
||||
mae_thresh: null
|
||||
mape_thresh: 0.0
|
||||
|
||||
log:
|
||||
log_step: 2000
|
||||
plot: False
|
||||
|
|
@ -0,0 +1,67 @@
|
|||
data:
|
||||
num_nodes: 307
|
||||
lag: 12
|
||||
horizon: 12
|
||||
val_ratio: 0.2
|
||||
test_ratio: 0.2
|
||||
tod: False
|
||||
normalizer: std
|
||||
column_wise: False
|
||||
default_graph: True
|
||||
add_time_in_day: True
|
||||
add_day_in_week: True
|
||||
steps_per_day: 288
|
||||
days_per_week: 7
|
||||
|
||||
model:
|
||||
input_dim: 1
|
||||
output_dim: 1
|
||||
input_window: 12
|
||||
output_window: 12
|
||||
gcn_true: true
|
||||
buildA_true: true
|
||||
gcn_depth: 2
|
||||
dropout: 0.3
|
||||
subgraph_size: 20
|
||||
node_dim: 40
|
||||
dilation_exponential: 1
|
||||
conv_channels: 32
|
||||
residual_channels: 32
|
||||
skip_channels: 64
|
||||
end_channels: 128
|
||||
layers: 3
|
||||
propalpha: 0.05
|
||||
tanhalpha: 3
|
||||
layer_norm_affline: true
|
||||
use_curriculum_learning: true
|
||||
step_size1: 2500
|
||||
task_level: 0
|
||||
num_split: 1
|
||||
step_size2: 100
|
||||
model_type: stmlp
|
||||
|
||||
train:
|
||||
loss_func: mae
|
||||
seed: 10
|
||||
batch_size: 64
|
||||
epochs: 300
|
||||
lr_init: 0.003
|
||||
weight_decay: 0
|
||||
lr_decay: False
|
||||
lr_decay_rate: 0.3
|
||||
lr_decay_step: "5,20,40,70"
|
||||
early_stop: True
|
||||
early_stop_patience: 15
|
||||
grad_norm: False
|
||||
max_grad_norm: 5
|
||||
real_value: True
|
||||
teacher: True
|
||||
teacher_stu: True
|
||||
|
||||
test:
|
||||
mae_thresh: null
|
||||
mape_thresh: 0.0
|
||||
|
||||
log:
|
||||
log_step: 2000
|
||||
plot: False
|
||||
|
|
@ -0,0 +1,66 @@
|
|||
data:
|
||||
num_nodes: 883
|
||||
lag: 12
|
||||
horizon: 12
|
||||
val_ratio: 0.2
|
||||
test_ratio: 0.2
|
||||
tod: False
|
||||
normalizer: std
|
||||
column_wise: False
|
||||
default_graph: True
|
||||
add_time_in_day: True
|
||||
add_day_in_week: True
|
||||
steps_per_day: 288
|
||||
days_per_week: 7
|
||||
|
||||
model:
|
||||
input_dim: 1
|
||||
output_dim: 1
|
||||
input_window: 12
|
||||
output_window: 12
|
||||
gcn_true: true
|
||||
buildA_true: true
|
||||
gcn_depth: 2
|
||||
dropout: 0.3
|
||||
subgraph_size: 20
|
||||
node_dim: 40
|
||||
dilation_exponential: 1
|
||||
conv_channels: 32
|
||||
residual_channels: 32
|
||||
skip_channels: 64
|
||||
end_channels: 128
|
||||
layers: 3
|
||||
propalpha: 0.05
|
||||
tanhalpha: 3
|
||||
layer_norm_affline: true
|
||||
use_curriculum_learning: true
|
||||
step_size1: 2500
|
||||
task_level: 0
|
||||
num_split: 1
|
||||
step_size2: 100
|
||||
model_type: stmlp
|
||||
|
||||
train:
|
||||
loss_func: mae
|
||||
seed: 10
|
||||
batch_size: 16
|
||||
epochs: 300
|
||||
lr_init: 0.003
|
||||
weight_decay: 0
|
||||
lr_decay: False
|
||||
lr_decay_rate: 0.3
|
||||
lr_decay_step: "5,20,40,70"
|
||||
early_stop: True
|
||||
early_stop_patience: 15
|
||||
grad_norm: False
|
||||
max_grad_norm: 5
|
||||
real_value: True
|
||||
teacher_stu: True
|
||||
|
||||
test:
|
||||
mae_thresh: null
|
||||
mape_thresh: 0.0
|
||||
|
||||
log:
|
||||
log_step: 2000
|
||||
plot: False
|
||||
|
|
@ -0,0 +1,66 @@
|
|||
data:
|
||||
num_nodes: 170
|
||||
lag: 12
|
||||
horizon: 12
|
||||
val_ratio: 0.2
|
||||
test_ratio: 0.2
|
||||
tod: False
|
||||
normalizer: std
|
||||
column_wise: False
|
||||
default_graph: True
|
||||
add_time_in_day: True
|
||||
add_day_in_week: True
|
||||
steps_per_day: 288
|
||||
days_per_week: 7
|
||||
|
||||
model:
|
||||
input_dim: 1
|
||||
output_dim: 1
|
||||
input_window: 12
|
||||
output_window: 12
|
||||
gcn_true: true
|
||||
buildA_true: true
|
||||
gcn_depth: 2
|
||||
dropout: 0.3
|
||||
subgraph_size: 20
|
||||
node_dim: 40
|
||||
dilation_exponential: 1
|
||||
conv_channels: 32
|
||||
residual_channels: 32
|
||||
skip_channels: 64
|
||||
end_channels: 128
|
||||
layers: 3
|
||||
propalpha: 0.05
|
||||
tanhalpha: 3
|
||||
layer_norm_affline: true
|
||||
use_curriculum_learning: true
|
||||
step_size1: 2500
|
||||
task_level: 0
|
||||
num_split: 1
|
||||
step_size2: 100
|
||||
model_type: stmlp
|
||||
|
||||
train:
|
||||
loss_func: mae
|
||||
seed: 10
|
||||
batch_size: 64
|
||||
epochs: 300
|
||||
lr_init: 0.003
|
||||
weight_decay: 0
|
||||
lr_decay: False
|
||||
lr_decay_rate: 0.3
|
||||
lr_decay_step: "5,20,40,70"
|
||||
early_stop: True
|
||||
early_stop_patience: 15
|
||||
grad_norm: False
|
||||
max_grad_norm: 5
|
||||
real_value: True
|
||||
teacher_stu: True
|
||||
|
||||
test:
|
||||
mae_thresh: null
|
||||
mape_thresh: 0.0
|
||||
|
||||
log:
|
||||
log_step: 2000
|
||||
plot: False
|
||||
|
|
@ -121,7 +121,7 @@ def download_kaggle_data(current_dir):
|
|||
如果目标文件夹已存在,会覆盖冲突的文件。
|
||||
"""
|
||||
try:
|
||||
print("正在下载 KaggleHub 数据集...")
|
||||
print("正在下载 PEMS 数据集...")
|
||||
path = kagglehub.dataset_download("elmahy/pems-dataset")
|
||||
# print("Path to KaggleHub dataset files:", path)
|
||||
|
||||
|
|
|
|||
|
|
@ -0,0 +1,368 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import math
|
||||
|
||||
|
||||
class GLU(nn.Module):
|
||||
def __init__(self, features, dropout=0.1):
|
||||
super(GLU, self).__init__()
|
||||
self.conv1 = nn.Conv2d(features, features, (1, 1))
|
||||
self.conv2 = nn.Conv2d(features, features, (1, 1))
|
||||
self.conv3 = nn.Conv2d(features, features, (1, 1))
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
def forward(self, x):
|
||||
x1 = self.conv1(x)
|
||||
x2 = self.conv2(x)
|
||||
out = x1 * torch.sigmoid(x2)
|
||||
out = self.dropout(out)
|
||||
out = self.conv3(out)
|
||||
return out
|
||||
|
||||
|
||||
# class TemporalEmbedding(nn.Module):
|
||||
# def __init__(self, time, features):
|
||||
# super(TemporalEmbedding, self).__init__()
|
||||
#
|
||||
# self.time = time
|
||||
# # self.time_day = nn.Parameter(torch.empty(time, features))
|
||||
# # nn.init.xavier_uniform_(self.time_day)
|
||||
# #
|
||||
# # self.time_week = nn.Parameter(torch.empty(7, features))
|
||||
# # nn.init.xavier_uniform_(self.time_week)
|
||||
# self.time_day = nn.Embedding(time, features)
|
||||
# self.time_week = nn.Embedding(7, features)
|
||||
#
|
||||
# def forward(self, x):
|
||||
# day_emb = x[..., 1]
|
||||
# # time_day = self.time_day[(day_emb[:, :, :] * self.time).type(torch.LongTensor)]
|
||||
# # time_day = time_day.transpose(1, 2).contiguous()
|
||||
#
|
||||
# week_emb = x[..., 2]
|
||||
# # time_week = self.time_week[(week_emb[:, :, :]).type(torch.LongTensor)]
|
||||
# # time_week = time_week.transpose(1, 2).contiguous()
|
||||
#
|
||||
# t_idx = (day_emb[:, -1, :, ] * (self.time - 1)).long() # (B, N)
|
||||
# d_idx = week_emb[:, -1, :, ].long() # (B, N)
|
||||
# # time_emb = self.time_embedding(t_idx) # (B, N, hidden_dim)
|
||||
# # day_emb = self.day_embedding(d_idx) # (B, N, hidden_dim)
|
||||
#
|
||||
# tem_emb = t_idx + d_idx
|
||||
#
|
||||
# # tem_emb = tem_emb.permute(0, 3, 1, 2)
|
||||
#
|
||||
# return tem_emb
|
||||
class TemporalEmbedding(nn.Module):
|
||||
def __init__(self, time, features):
|
||||
super(TemporalEmbedding, self).__init__()
|
||||
|
||||
self.time = time
|
||||
self.time_day = nn.Parameter(torch.empty(time, features))
|
||||
nn.init.xavier_uniform_(self.time_day)
|
||||
|
||||
self.time_week = nn.Parameter(torch.empty(7, features))
|
||||
nn.init.xavier_uniform_(self.time_week)
|
||||
|
||||
def forward(self, x):
|
||||
day_emb = x[..., 1]
|
||||
time_day = self.time_day[(day_emb[:, :, :] * self.time).type(torch.LongTensor)]
|
||||
time_day = time_day.transpose(1, 2).contiguous()
|
||||
|
||||
week_emb = x[..., 2]
|
||||
time_week = self.time_week[(week_emb[:, :, :]).type(torch.LongTensor)]
|
||||
time_week = time_week.transpose(1, 2).contiguous()
|
||||
|
||||
tem_emb = time_day + time_week
|
||||
|
||||
tem_emb = tem_emb.permute(0,3,1,2)
|
||||
|
||||
return tem_emb
|
||||
|
||||
class Diffusion_GCN(nn.Module):
|
||||
def __init__(self, channels=128, diffusion_step=1, dropout=0.1):
|
||||
super().__init__()
|
||||
self.diffusion_step = diffusion_step
|
||||
self.conv = nn.Conv2d(diffusion_step * channels, channels, (1, 1))
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
def forward(self, x, adj):
|
||||
out = []
|
||||
for i in range(0, self.diffusion_step):
|
||||
if adj.dim() == 3:
|
||||
x = torch.einsum("bcnt,bnm->bcmt", x, adj).contiguous()
|
||||
out.append(x)
|
||||
elif adj.dim() == 2:
|
||||
x = torch.einsum("bcnt,nm->bcmt", x, adj).contiguous()
|
||||
out.append(x)
|
||||
x = torch.cat(out, dim=1)
|
||||
x = self.conv(x)
|
||||
output = self.dropout(x)
|
||||
return output
|
||||
|
||||
|
||||
class Graph_Generator(nn.Module):
|
||||
def __init__(self, channels=128, num_nodes=170, diffusion_step=1, dropout=0.1):
|
||||
super().__init__()
|
||||
self.memory = nn.Parameter(torch.randn(channels, num_nodes))
|
||||
nn.init.xavier_uniform_(self.memory)
|
||||
self.fc = nn.Linear(2, 1)
|
||||
|
||||
def forward(self, x):
|
||||
adj_dyn_1 = torch.softmax(
|
||||
F.relu(
|
||||
torch.einsum("bcnt, cm->bnm", x, self.memory).contiguous()
|
||||
/ math.sqrt(x.shape[1])
|
||||
),
|
||||
-1,
|
||||
)
|
||||
adj_dyn_2 = torch.softmax(
|
||||
F.relu(
|
||||
torch.einsum("bcn, bcm->bnm", x.sum(-1), x.sum(-1)).contiguous()
|
||||
/ math.sqrt(x.shape[1])
|
||||
),
|
||||
-1,
|
||||
)
|
||||
# adj_dyn = (adj_dyn_1 + adj_dyn_2 + adj)/2
|
||||
adj_f = torch.cat([(adj_dyn_1).unsqueeze(-1)] + [(adj_dyn_2).unsqueeze(-1)], dim=-1)
|
||||
adj_f = torch.softmax(self.fc(adj_f).squeeze(), -1)
|
||||
|
||||
topk_values, topk_indices = torch.topk(adj_f, k=int(adj_f.shape[1] * 0.8), dim=-1)
|
||||
mask = torch.zeros_like(adj_f)
|
||||
mask.scatter_(-1, topk_indices, 1)
|
||||
adj_f = adj_f * mask
|
||||
|
||||
return adj_f
|
||||
|
||||
|
||||
class DGCN(nn.Module):
|
||||
def __init__(self, channels=128, num_nodes=170, diffusion_step=1, dropout=0.1, emb=None):
|
||||
super().__init__()
|
||||
self.conv = nn.Conv2d(channels, channels, (1, 1))
|
||||
self.generator = Graph_Generator(channels, num_nodes, diffusion_step, dropout)
|
||||
self.gcn = Diffusion_GCN(channels, diffusion_step, dropout)
|
||||
self.emb = emb
|
||||
|
||||
def forward(self, x):
|
||||
skip = x
|
||||
x = self.conv(x)
|
||||
adj_dyn = self.generator(x)
|
||||
x = self.gcn(x, adj_dyn)
|
||||
x = x * self.emb + skip
|
||||
return x
|
||||
|
||||
|
||||
class Splitting(nn.Module):
|
||||
def __init__(self):
|
||||
super(Splitting, self).__init__()
|
||||
|
||||
def even(self, x):
|
||||
return x[:, :, :, ::2]
|
||||
|
||||
def odd(self, x):
|
||||
return x[:, :, :, 1::2]
|
||||
|
||||
def forward(self, x):
|
||||
return (self.even(x), self.odd(x))
|
||||
|
||||
|
||||
class IDGCN(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
device,
|
||||
channels=64,
|
||||
diffusion_step=1,
|
||||
splitting=True,
|
||||
num_nodes=170,
|
||||
dropout=0.2, emb=None
|
||||
):
|
||||
super(IDGCN, self).__init__()
|
||||
|
||||
device = device
|
||||
self.dropout = dropout
|
||||
self.num_nodes = num_nodes
|
||||
self.splitting = splitting
|
||||
self.split = Splitting()
|
||||
|
||||
Conv1 = []
|
||||
Conv2 = []
|
||||
Conv3 = []
|
||||
Conv4 = []
|
||||
pad_l = 3
|
||||
pad_r = 3
|
||||
|
||||
k1 = 5
|
||||
k2 = 3
|
||||
Conv1 += [
|
||||
nn.ReplicationPad2d((pad_l, pad_r, 0, 0)),
|
||||
nn.Conv2d(channels, channels, kernel_size=(1, k1)),
|
||||
nn.LeakyReLU(negative_slope=0.01, inplace=True),
|
||||
nn.Dropout(self.dropout),
|
||||
nn.Conv2d(channels, channels, kernel_size=(1, k2)),
|
||||
nn.Tanh(),
|
||||
]
|
||||
Conv2 += [
|
||||
nn.ReplicationPad2d((pad_l, pad_r, 0, 0)),
|
||||
nn.Conv2d(channels, channels, kernel_size=(1, k1)),
|
||||
nn.LeakyReLU(negative_slope=0.01, inplace=True),
|
||||
nn.Dropout(self.dropout),
|
||||
nn.Conv2d(channels, channels, kernel_size=(1, k2)),
|
||||
nn.Tanh(),
|
||||
]
|
||||
Conv4 += [
|
||||
nn.ReplicationPad2d((pad_l, pad_r, 0, 0)),
|
||||
nn.Conv2d(channels, channels, kernel_size=(1, k1)),
|
||||
nn.LeakyReLU(negative_slope=0.01, inplace=True),
|
||||
nn.Dropout(self.dropout),
|
||||
nn.Conv2d(channels, channels, kernel_size=(1, k2)),
|
||||
nn.Tanh(),
|
||||
]
|
||||
Conv3 += [
|
||||
nn.ReplicationPad2d((pad_l, pad_r, 0, 0)),
|
||||
nn.Conv2d(channels, channels, kernel_size=(1, k1)),
|
||||
nn.LeakyReLU(negative_slope=0.01, inplace=True),
|
||||
nn.Dropout(self.dropout),
|
||||
nn.Conv2d(channels, channels, kernel_size=(1, k2)),
|
||||
nn.Tanh(),
|
||||
]
|
||||
|
||||
self.conv1 = nn.Sequential(*Conv1)
|
||||
self.conv2 = nn.Sequential(*Conv2)
|
||||
self.conv3 = nn.Sequential(*Conv3)
|
||||
self.conv4 = nn.Sequential(*Conv4)
|
||||
|
||||
self.dgcn = DGCN(channels, num_nodes, diffusion_step, dropout, emb)
|
||||
|
||||
def forward(self, x):
|
||||
if self.splitting:
|
||||
(x_even, x_odd) = self.split(x)
|
||||
else:
|
||||
(x_even, x_odd) = x
|
||||
|
||||
x1 = self.conv1(x_even)
|
||||
x1 = self.dgcn(x1)
|
||||
d = x_odd.mul(torch.tanh(x1))
|
||||
|
||||
x2 = self.conv2(x_odd)
|
||||
x2 = self.dgcn(x2)
|
||||
c = x_even.mul(torch.tanh(x2))
|
||||
|
||||
x3 = self.conv3(c)
|
||||
x3 = self.dgcn(x3)
|
||||
x_odd_update = d + x3
|
||||
|
||||
x4 = self.conv4(d)
|
||||
x4 = self.dgcn(x4)
|
||||
x_even_update = c + x4
|
||||
|
||||
return (x_even_update, x_odd_update)
|
||||
|
||||
|
||||
class IDGCN_Tree(nn.Module):
|
||||
def __init__(
|
||||
self, device, channels=64, diffusion_step=1, num_nodes=170, dropout=0.1
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.memory1 = nn.Parameter(torch.randn(channels, num_nodes, 6))
|
||||
self.memory2 = nn.Parameter(torch.randn(channels, num_nodes, 3))
|
||||
self.memory3 = nn.Parameter(torch.randn(channels, num_nodes, 3))
|
||||
|
||||
self.IDGCN1 = IDGCN(
|
||||
device=device,
|
||||
splitting=True,
|
||||
channels=channels,
|
||||
diffusion_step=diffusion_step,
|
||||
num_nodes=num_nodes,
|
||||
dropout=dropout, emb=self.memory1
|
||||
)
|
||||
self.IDGCN2 = IDGCN(
|
||||
device=device,
|
||||
splitting=True,
|
||||
channels=channels,
|
||||
diffusion_step=diffusion_step,
|
||||
num_nodes=num_nodes,
|
||||
dropout=dropout, emb=self.memory2
|
||||
)
|
||||
self.IDGCN3 = IDGCN(
|
||||
device=device,
|
||||
splitting=True,
|
||||
channels=channels,
|
||||
diffusion_step=diffusion_step,
|
||||
num_nodes=num_nodes,
|
||||
dropout=dropout, emb=self.memory2
|
||||
)
|
||||
|
||||
def concat(self, even, odd):
|
||||
even = even.permute(3, 1, 2, 0)
|
||||
odd = odd.permute(3, 1, 2, 0)
|
||||
len = even.shape[0]
|
||||
_ = []
|
||||
for i in range(len):
|
||||
_.append(even[i].unsqueeze(0))
|
||||
_.append(odd[i].unsqueeze(0))
|
||||
return torch.cat(_, 0).permute(3, 1, 2, 0)
|
||||
|
||||
def forward(self, x):
|
||||
x_even_update1, x_odd_update1 = self.IDGCN1(x)
|
||||
x_even_update2, x_odd_update2 = self.IDGCN2(x_even_update1)
|
||||
x_even_update3, x_odd_update3 = self.IDGCN3(x_odd_update1)
|
||||
concat1 = self.concat(x_even_update2, x_odd_update2)
|
||||
concat2 = self.concat(x_even_update3, x_odd_update3)
|
||||
concat0 = self.concat(concat1, concat2)
|
||||
output = concat0 + x
|
||||
return output
|
||||
|
||||
|
||||
class STIDGCN(nn.Module):
|
||||
def __init__(self, args):
|
||||
"""
|
||||
device, input_dim, num_nodes, channels, granularity, dropout=0.1
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
device = args['device']
|
||||
input_dim = args['input_dim']
|
||||
self.num_nodes = args['num_nodes']
|
||||
self.output_len = 12
|
||||
channels = args['channels']
|
||||
granularity = args['granularity']
|
||||
dropout = args['dropout']
|
||||
diffusion_step = 1
|
||||
|
||||
self.Temb = TemporalEmbedding(granularity, channels)
|
||||
|
||||
self.start_conv = nn.Conv2d(
|
||||
in_channels=input_dim, out_channels=channels, kernel_size=(1, 1)
|
||||
)
|
||||
|
||||
self.tree = IDGCN_Tree(
|
||||
device=device,
|
||||
channels=channels * 2,
|
||||
diffusion_step=diffusion_step,
|
||||
num_nodes=self.num_nodes,
|
||||
dropout=dropout,
|
||||
)
|
||||
|
||||
self.glu = GLU(channels * 2, dropout)
|
||||
|
||||
self.regression_layer = nn.Conv2d(
|
||||
channels * 2, self.output_len, kernel_size=(1, self.output_len)
|
||||
)
|
||||
|
||||
def param_num(self):
|
||||
return sum([param.nelement() for param in self.parameters()])
|
||||
|
||||
def forward(self, input):
|
||||
input = input.transpose(1, 3)
|
||||
x = input
|
||||
# Encoder
|
||||
# Data Embedding
|
||||
time_emb = self.Temb(input.permute(0, 3, 2, 1))
|
||||
x = torch.cat([self.start_conv(x)] + [time_emb], dim=1)
|
||||
# IDGCN_Tree
|
||||
x = self.tree(x)
|
||||
# Decoder
|
||||
gcn = self.glu(x) + x
|
||||
prediction = self.regression_layer(F.relu(gcn))
|
||||
return prediction
|
||||
|
|
@ -0,0 +1,307 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn import init
|
||||
from data.get_adj import get_adj
|
||||
import numbers
|
||||
|
||||
|
||||
# --- 基础算子 ---
|
||||
class NConv(nn.Module):
|
||||
def forward(self, x, adj):
|
||||
return torch.einsum('ncwl,vw->ncvl', (x, adj)).contiguous()
|
||||
|
||||
|
||||
class DyNconv(nn.Module):
|
||||
def forward(self, x, adj):
|
||||
return torch.einsum('ncvl,nvwl->ncwl', (x, adj)).contiguous()
|
||||
|
||||
|
||||
class Linear(nn.Module):
|
||||
def __init__(self, c_in, c_out, bias=True):
|
||||
super().__init__()
|
||||
self.mlp = nn.Conv2d(c_in, c_out, kernel_size=1, bias=bias)
|
||||
|
||||
def forward(self, x):
|
||||
return self.mlp(x)
|
||||
|
||||
|
||||
class Prop(nn.Module):
|
||||
def __init__(self, c_in, c_out, gdep, dropout, alpha):
|
||||
super().__init__()
|
||||
self.nconv = NConv()
|
||||
self.mlp = Linear(c_in, c_out)
|
||||
self.gdep, self.dropout, self.alpha = gdep, dropout, alpha
|
||||
|
||||
def forward(self, x, adj):
|
||||
adj = adj + torch.eye(adj.size(0), device=x.device)
|
||||
d = adj.sum(1)
|
||||
a = adj / d.view(-1, 1)
|
||||
h = x
|
||||
for _ in range(self.gdep):
|
||||
h = self.alpha * x + (1 - self.alpha) * self.nconv(h, a)
|
||||
return self.mlp(h)
|
||||
|
||||
|
||||
class MixProp(nn.Module):
|
||||
def __init__(self, c_in, c_out, gdep, dropout, alpha):
|
||||
super().__init__()
|
||||
self.nconv = NConv()
|
||||
self.mlp = Linear((gdep + 1) * c_in, c_out)
|
||||
self.gdep, self.dropout, self.alpha = gdep, dropout, alpha
|
||||
|
||||
def forward(self, x, adj):
|
||||
adj = adj + torch.eye(adj.size(0), device=x.device)
|
||||
d = adj.sum(1)
|
||||
a = adj / d.view(-1, 1)
|
||||
out = [x]
|
||||
h = x
|
||||
for _ in range(self.gdep):
|
||||
h = self.alpha * x + (1 - self.alpha) * self.nconv(h, a)
|
||||
out.append(h)
|
||||
return self.mlp(torch.cat(out, dim=1))
|
||||
|
||||
|
||||
class DyMixprop(nn.Module):
|
||||
def __init__(self, c_in, c_out, gdep, dropout, alpha):
|
||||
super().__init__()
|
||||
self.nconv = DyNconv()
|
||||
self.mlp1 = Linear((gdep + 1) * c_in, c_out)
|
||||
self.mlp2 = Linear((gdep + 1) * c_in, c_out)
|
||||
self.gdep, self.dropout, self.alpha = gdep, dropout, alpha
|
||||
self.lin1, self.lin2 = Linear(c_in, c_in), Linear(c_in, c_in)
|
||||
|
||||
def forward(self, x):
|
||||
x1 = torch.tanh(self.lin1(x))
|
||||
x2 = torch.tanh(self.lin2(x))
|
||||
adj = self.nconv(x1.transpose(2, 1), x2)
|
||||
adj0 = torch.softmax(adj, dim=2)
|
||||
adj1 = torch.softmax(adj.transpose(2, 1), dim=2)
|
||||
# 两条分支
|
||||
out1, out2 = [x], [x]
|
||||
h = x
|
||||
for _ in range(self.gdep):
|
||||
h = self.alpha * x + (1 - self.alpha) * self.nconv(h, adj0)
|
||||
out1.append(h)
|
||||
h = x
|
||||
for _ in range(self.gdep):
|
||||
h = self.alpha * x + (1 - self.alpha) * self.nconv(h, adj1)
|
||||
out2.append(h)
|
||||
return self.mlp1(torch.cat(out1, dim=1)) + self.mlp2(torch.cat(out2, dim=1))
|
||||
|
||||
|
||||
class DilatedInception(nn.Module):
|
||||
def __init__(self, cin, cout, dilation_factor=2):
|
||||
super().__init__()
|
||||
self.kernels = [2, 3, 6, 7]
|
||||
cout_each = int(cout / len(self.kernels))
|
||||
self.convs = nn.ModuleList([nn.Conv2d(cin, cout_each, kernel_size=(1, k), dilation=(1, dilation_factor))
|
||||
for k in self.kernels])
|
||||
|
||||
def forward(self, x):
|
||||
outs = [conv(x)[..., -self.convs[-1](x).size(3):] for conv in self.convs]
|
||||
return torch.cat(outs, dim=1)
|
||||
|
||||
|
||||
class GraphConstructor(nn.Module):
|
||||
def __init__(self, nnodes, k, dim, device, alpha=3, static_feat=None):
|
||||
super().__init__()
|
||||
self.nnodes, self.k, self.dim, self.alpha, self.device = nnodes, k, dim, alpha, device
|
||||
self.static_feat = static_feat
|
||||
if static_feat is not None:
|
||||
xd = static_feat.shape[1]
|
||||
self.lin1, self.lin2 = nn.Linear(xd, dim), nn.Linear(xd, dim)
|
||||
else:
|
||||
self.emb1 = nn.Embedding(nnodes, dim)
|
||||
self.emb2 = nn.Embedding(nnodes, dim)
|
||||
self.lin1, self.lin2 = nn.Linear(dim, dim), nn.Linear(dim, dim)
|
||||
|
||||
def forward(self, idx):
|
||||
if self.static_feat is None:
|
||||
vec1, vec2 = self.emb1(idx), self.emb2(idx)
|
||||
else:
|
||||
vec1 = vec2 = self.static_feat[idx, :]
|
||||
vec1 = torch.tanh(self.alpha * self.lin1(vec1))
|
||||
vec2 = torch.tanh(self.alpha * self.lin2(vec2))
|
||||
a = torch.mm(vec1, vec2.transpose(1, 0)) - torch.mm(vec2, vec1.transpose(1, 0))
|
||||
adj = F.relu(torch.tanh(self.alpha * a))
|
||||
mask = torch.zeros(idx.size(0), idx.size(0), device=self.device)
|
||||
s1, t1 = adj.topk(self.k, 1)
|
||||
mask.scatter_(1, t1, s1.new_ones(s1.size()))
|
||||
return adj * mask
|
||||
|
||||
|
||||
class LayerNorm(nn.Module):
|
||||
__constants__ = ['normalized_shape', 'eps', 'elementwise_affine']
|
||||
|
||||
def __init__(self, normalized_shape, eps=1e-5, elementwise_affine=True):
|
||||
super().__init__()
|
||||
if isinstance(normalized_shape, numbers.Integral):
|
||||
normalized_shape = (normalized_shape,)
|
||||
self.normalized_shape, self.eps, self.elementwise_affine = tuple(normalized_shape), eps, elementwise_affine
|
||||
if elementwise_affine:
|
||||
self.weight = nn.Parameter(torch.Tensor(*normalized_shape))
|
||||
self.bias = nn.Parameter(torch.Tensor(*normalized_shape))
|
||||
init.ones_(self.weight);
|
||||
init.zeros_(self.bias)
|
||||
else:
|
||||
self.register_parameter('weight', None)
|
||||
self.register_parameter('bias', None)
|
||||
|
||||
def forward(self, x, idx):
|
||||
if self.elementwise_affine:
|
||||
return F.layer_norm(x, tuple(x.shape[1:]), self.weight[:, idx, :], self.bias[:, idx, :], self.eps)
|
||||
else:
|
||||
return F.layer_norm(x, tuple(x.shape[1:]), self.weight, self.bias, self.eps)
|
||||
|
||||
def extra_repr(self):
|
||||
return f'{self.normalized_shape}, eps={self.eps}, elementwise_affine={self.elementwise_affine}'
|
||||
|
||||
|
||||
# --- 合并后的模型类,支持 teacher 与 stmlp 两种分支 ---
|
||||
class STMLP(nn.Module):
|
||||
def __init__(self, args):
|
||||
super().__init__()
|
||||
# 参数从字典中读取
|
||||
self.adj_mx = get_adj(args)
|
||||
self.num_nodes = args['num_nodes']
|
||||
self.feature_dim = args['input_dim']
|
||||
|
||||
self.input_window = args['input_window']
|
||||
self.output_window = args['output_window']
|
||||
self.output_dim = args['output_dim']
|
||||
self.device = args['device']
|
||||
|
||||
self.gcn_true = args['gcn_true']
|
||||
self.buildA_true = args['buildA_true']
|
||||
self.gcn_depth = args['gcn_depth']
|
||||
self.dropout = args['dropout']
|
||||
self.subgraph_size = args['subgraph_size']
|
||||
self.node_dim = args['node_dim']
|
||||
self.dilation_exponential = args['dilation_exponential']
|
||||
|
||||
self.conv_channels = args['conv_channels']
|
||||
self.residual_channels = args['residual_channels']
|
||||
self.skip_channels = args['skip_channels']
|
||||
self.end_channels = args['end_channels']
|
||||
|
||||
self.layers = args['layers']
|
||||
self.propalpha = args['propalpha']
|
||||
self.tanhalpha = args['tanhalpha']
|
||||
self.layer_norm_affline = args['layer_norm_affline']
|
||||
|
||||
self.model_type = args['model_type'] # 'teacher' 或 'stmlp'
|
||||
self.idx = torch.arange(self.num_nodes).to(self.device)
|
||||
self.predefined_A = None if self.adj_mx is None else (torch.tensor(self.adj_mx) - torch.eye(self.num_nodes)).to(
|
||||
self.device)
|
||||
self.static_feat = None
|
||||
|
||||
# transformer(保留原有结构)
|
||||
self.encoder_layer = nn.TransformerEncoderLayer(d_model=12, nhead=4, batch_first=True)
|
||||
self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=3)
|
||||
|
||||
# 构建各层
|
||||
self.start_conv = nn.Conv2d(self.feature_dim, self.residual_channels, kernel_size=1)
|
||||
self.gc = GraphConstructor(self.num_nodes, self.subgraph_size, self.node_dim, self.device, alpha=self.tanhalpha,
|
||||
static_feat=self.static_feat)
|
||||
# 计算 receptive_field
|
||||
kernel_size = 7
|
||||
if self.dilation_exponential > 1:
|
||||
self.receptive_field = int(
|
||||
self.output_dim + (kernel_size - 1) * (self.dilation_exponential ** self.layers - 1) / (
|
||||
self.dilation_exponential - 1))
|
||||
else:
|
||||
self.receptive_field = self.layers * (kernel_size - 1) + self.output_dim
|
||||
|
||||
self.filter_convs = nn.ModuleList()
|
||||
self.gate_convs = nn.ModuleList()
|
||||
self.residual_convs = nn.ModuleList()
|
||||
self.skip_convs = nn.ModuleList()
|
||||
self.norm = nn.ModuleList()
|
||||
self.stu_mlp = nn.ModuleList([nn.Sequential(nn.Linear(c, c), nn.Linear(c, c), nn.Linear(c, c))
|
||||
for c in [13, 7, 1]])
|
||||
if self.gcn_true:
|
||||
self.gconv1 = nn.ModuleList()
|
||||
self.gconv2 = nn.ModuleList()
|
||||
|
||||
new_dilation = 1
|
||||
for i in range(1):
|
||||
rf_size_i = int(1 + i * (kernel_size - 1) * (self.dilation_exponential ** self.layers - 1) / (
|
||||
self.dilation_exponential - 1)) if self.dilation_exponential > 1 else i * self.layers * (
|
||||
kernel_size - 1) + 1
|
||||
for j in range(1, self.layers + 1):
|
||||
rf_size_j = int(rf_size_i + (kernel_size - 1) * (self.dilation_exponential ** j - 1) / (
|
||||
self.dilation_exponential - 1)) if self.dilation_exponential > 1 else rf_size_i + j * (
|
||||
kernel_size - 1)
|
||||
self.filter_convs.append(
|
||||
DilatedInception(self.residual_channels, self.conv_channels, dilation_factor=new_dilation))
|
||||
self.gate_convs.append(
|
||||
DilatedInception(self.residual_channels, self.conv_channels, dilation_factor=new_dilation))
|
||||
self.residual_convs.append(nn.Conv2d(self.conv_channels, self.residual_channels, kernel_size=1))
|
||||
k_size = (1, self.input_window - rf_size_j + 1) if self.input_window > self.receptive_field else (
|
||||
1, self.receptive_field - rf_size_j + 1)
|
||||
self.skip_convs.append(nn.Conv2d(self.conv_channels, self.skip_channels, kernel_size=k_size))
|
||||
if self.gcn_true:
|
||||
self.gconv1.append(MixProp(self.conv_channels, self.residual_channels, self.gcn_depth, self.dropout,
|
||||
self.propalpha))
|
||||
self.gconv2.append(MixProp(self.conv_channels, self.residual_channels, self.gcn_depth, self.dropout,
|
||||
self.propalpha))
|
||||
norm_size = (self.residual_channels, self.num_nodes,
|
||||
self.input_window - rf_size_j + 1) if self.input_window > self.receptive_field else (
|
||||
self.residual_channels, self.num_nodes, self.receptive_field - rf_size_j + 1)
|
||||
self.norm.append(LayerNorm(norm_size, elementwise_affine=self.layer_norm_affline))
|
||||
new_dilation *= self.dilation_exponential
|
||||
|
||||
self.end_conv_1 = nn.Conv2d(self.skip_channels, self.end_channels, kernel_size=1, bias=True)
|
||||
self.end_conv_2 = nn.Conv2d(self.end_channels, self.output_window, kernel_size=1, bias=True)
|
||||
k0 = (1, self.input_window) if self.input_window > self.receptive_field else (1, self.receptive_field)
|
||||
self.skip0 = nn.Conv2d(self.feature_dim, self.skip_channels, kernel_size=k0, bias=True)
|
||||
kE = (1, self.input_window - self.receptive_field + 1) if self.input_window > self.receptive_field else (1, 1)
|
||||
self.skipE = nn.Conv2d(self.residual_channels, self.skip_channels, kernel_size=kE, bias=True)
|
||||
# 最后输出分支,根据模型类型选择不同的头
|
||||
if self.model_type == 'teacher':
|
||||
self.tt_linear1 = nn.Linear(self.residual_channels, self.input_window)
|
||||
self.tt_linear2 = nn.Linear(1, 32)
|
||||
self.ss_linear1 = nn.Linear(self.residual_channels, self.input_window)
|
||||
self.ss_linear2 = nn.Linear(1, 32)
|
||||
else: # stmlp
|
||||
self.out_linear1 = nn.Linear(self.residual_channels, self.input_window)
|
||||
self.out_linear2 = nn.Linear(1, 32)
|
||||
|
||||
def forward(self, source, idx=None):
|
||||
source = source[..., 0:1]
|
||||
sout, tout = [], []
|
||||
inputs = source.transpose(1, 3)
|
||||
assert inputs.size(3) == self.input_window, 'input sequence length mismatch'
|
||||
if self.input_window < self.receptive_field:
|
||||
inputs = F.pad(inputs, (self.receptive_field - self.input_window, 0, 0, 0))
|
||||
if self.gcn_true:
|
||||
adp = self.gc(self.idx if idx is None else idx) if self.buildA_true else self.predefined_A
|
||||
x = self.start_conv(inputs)
|
||||
skip = self.skip0(F.dropout(inputs, self.dropout, training=self.training))
|
||||
for i in range(self.layers):
|
||||
residual = x
|
||||
filters = torch.tanh(self.filter_convs[i](x))
|
||||
gate = torch.sigmoid(self.gate_convs[i](x))
|
||||
x = F.dropout(filters * gate, self.dropout, training=self.training)
|
||||
tout.append(x)
|
||||
s = self.skip_convs[i](x)
|
||||
skip = s + skip
|
||||
if self.gcn_true:
|
||||
x = self.gconv1[i](x, adp) + self.gconv2[i](x, adp.transpose(1, 0))
|
||||
else:
|
||||
x = self.stu_mlp[i](x)
|
||||
x = x + residual[:, :, :, -x.size(3):]
|
||||
x = self.norm[i](x, self.idx if idx is None else idx)
|
||||
sout.append(x)
|
||||
skip = self.skipE(x) + skip
|
||||
x = F.relu(skip)
|
||||
x = F.relu(self.end_conv_1(x))
|
||||
x = self.end_conv_2(x)
|
||||
if self.model_type == 'teacher':
|
||||
ttout = self.tt_linear2(self.tt_linear1(tout[-1].transpose(1, 3)).transpose(1, 3))
|
||||
ssout = self.ss_linear2(self.ss_linear1(sout[-1].transpose(1, 3)).transpose(1, 3))
|
||||
return x, ttout, ssout
|
||||
else:
|
||||
x_ = self.out_linear2(self.out_linear1(tout[-1].transpose(1, 3)).transpose(1, 3))
|
||||
return x, x_, x
|
||||
|
|
@ -13,6 +13,8 @@ from model.STFGNN.STFGNN import STFGNN
|
|||
from model.STSGCN.STSGCN import STSGCN
|
||||
from model.STGODE.STGODE import ODEGCN
|
||||
from model.PDG2SEQ.PDG2Seqb import PDG2Seq
|
||||
from model.STMLP.STMLP import STMLP
|
||||
from model.STIDGCN.STIDGCN import STIDGCN
|
||||
from model.STID.STID import STID
|
||||
from model.STAEFormer.STAEFormer import STAEformer
|
||||
from model.EXP.EXP32 import EXP as EXP
|
||||
|
|
@ -34,6 +36,8 @@ def model_selector(model):
|
|||
case 'STSGCN': return STSGCN(model)
|
||||
case 'STGODE': return ODEGCN(model)
|
||||
case 'PDG2SEQ': return PDG2Seq(model)
|
||||
case 'STMLP': return STMLP(model)
|
||||
case 'STIDGCN': return STIDGCN(model)
|
||||
case 'STID': return STID(model)
|
||||
case 'STAEFormer': return STAEformer(model)
|
||||
case 'EXP': return EXP(model)
|
||||
|
|
|
|||
44
run.py
44
run.py
|
|
@ -18,6 +18,8 @@ from trainer.trainer_selector import select_trainer
|
|||
import yaml
|
||||
|
||||
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
|
||||
|
|
@ -32,26 +34,28 @@ def main():
|
|||
# Initialize model
|
||||
model = init_model(args['model'], device=args['device'])
|
||||
|
||||
# if args['mode'] == "benchmark":
|
||||
# # 支持计算消耗分析,设置 mode为 benchmark
|
||||
# import torch.profiler as profiler
|
||||
# dummy_input = torch.randn((64, 12, args['model']['num_nodes'], 3), device=args['device'])
|
||||
# min_val = dummy_input.min(dim=-1, keepdim=True)[0]
|
||||
# max_val = dummy_input.max(dim=-1, keepdim=True)[0]
|
||||
#
|
||||
# dummy_input = (dummy_input - min_val) / (max_val - min_val + 1e-6)
|
||||
# with profiler.profile(
|
||||
# activities=[
|
||||
# profiler.ProfilerActivity.CPU,
|
||||
# profiler.ProfilerActivity.CUDA
|
||||
# ],
|
||||
# with_stack=True,
|
||||
# profile_memory=True,
|
||||
# record_shapes=True
|
||||
# ) as prof:
|
||||
# out = model(dummy_input)
|
||||
# print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
|
||||
# return 0
|
||||
|
||||
|
||||
if args['mode'] == "benchmark":
|
||||
# 支持计算消耗分析,设置 mode为 benchmark
|
||||
import torch.profiler as profiler
|
||||
dummy_input = torch.randn((64, 12, args['model']['num_nodes'], 3), device=args['device'])
|
||||
min_val = dummy_input.min(dim=-1, keepdim=True)[0]
|
||||
max_val = dummy_input.max(dim=-1, keepdim=True)[0]
|
||||
|
||||
dummy_input = (dummy_input - min_val) / (max_val - min_val + 1e-6)
|
||||
with profiler.profile(
|
||||
activities=[
|
||||
profiler.ProfilerActivity.CPU,
|
||||
profiler.ProfilerActivity.CUDA
|
||||
],
|
||||
with_stack=True,
|
||||
profile_memory=True,
|
||||
record_shapes=True
|
||||
) as prof:
|
||||
out = model(dummy_input)
|
||||
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
|
||||
return 0
|
||||
|
||||
# Load dataset
|
||||
train_loader, val_loader, test_loader, scaler, *extra_data = get_dataloader(
|
||||
|
|
|
|||
|
|
@ -160,10 +160,6 @@ class Trainer:
|
|||
y_pred = torch.cat(y_pred, dim=0)
|
||||
y_true = torch.cat(y_true, dim=0)
|
||||
|
||||
# 你在这里需要把y_pred和y_true保存下来
|
||||
# torch.save(y_pred, "./test/PEMS07/y_pred_D.pt") # [3566,12,170,1]
|
||||
# torch.save(y_true, "./test/PEMS08/y_true.pt") # [3566,12,170,1]
|
||||
|
||||
for t in range(y_true.shape[1]):
|
||||
mae, rmse, mape = all_metrics(y_pred[:, t, ...], y_true[:, t, ...],
|
||||
args['mae_thresh'], args['mape_thresh'])
|
||||
|
|
|
|||
|
|
@ -161,10 +161,6 @@ class Trainer:
|
|||
y_pred = torch.cat(y_pred, dim=0)
|
||||
y_true = torch.cat(y_true, dim=0)
|
||||
|
||||
# 你在这里需要把y_pred和y_true保存下来
|
||||
# torch.save(y_pred, "./test/PEMS07/y_pred_D.pt") # [3566,12,170,1]
|
||||
# torch.save(y_true, "./test/PEMS08/y_true.pt") # [3566,12,170,1]
|
||||
|
||||
for t in range(y_true.shape[1]):
|
||||
mae, rmse, mape = all_metrics(y_pred[:, t, ...], y_true[:, t, ...],
|
||||
args['mae_thresh'], args['mape_thresh'])
|
||||
|
|
|
|||
|
|
@ -0,0 +1,261 @@
|
|||
import math
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
import copy
|
||||
import torch.nn.functional as F
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from tqdm import tqdm
|
||||
from lib.logger import get_logger
|
||||
from lib.loss_function import all_metrics
|
||||
from model.STMLP.STMLP import STMLP
|
||||
|
||||
|
||||
class Trainer:
|
||||
def __init__(self, model, loss, optimizer, train_loader, val_loader, test_loader,
|
||||
scaler, args, lr_scheduler=None):
|
||||
self.model = model
|
||||
self.loss = loss
|
||||
self.optimizer = optimizer
|
||||
self.train_loader = train_loader
|
||||
self.val_loader = val_loader
|
||||
self.test_loader = test_loader
|
||||
self.scaler = scaler
|
||||
self.args = args['train']
|
||||
self.lr_scheduler = lr_scheduler
|
||||
self.train_per_epoch = len(train_loader)
|
||||
self.val_per_epoch = len(val_loader) if val_loader else 0
|
||||
|
||||
# Paths for saving models and logs
|
||||
self.best_path = os.path.join(self.args['log_dir'], 'best_model.pth')
|
||||
self.best_test_path = os.path.join(self.args['log_dir'], 'best_test_model.pth')
|
||||
self.loss_figure_path = os.path.join(self.args['log_dir'], 'loss.png')
|
||||
self.pretrain_dir = f'./pre-train/{args["model"]["type"]}/{args["data"]["type"]}'
|
||||
self.pretrain_path = os.path.join(self.pretrain_dir, 'best_model.pth')
|
||||
self.pretrain_best_path = os.path.join(self.pretrain_dir, 'best_test_model.pth')
|
||||
|
||||
# Initialize logger
|
||||
if not os.path.isdir(self.args['log_dir']) and not self.args['debug']:
|
||||
os.makedirs(self.args['log_dir'], exist_ok=True)
|
||||
if not os.path.isdir(self.pretrain_dir) and not self.args['debug']:
|
||||
os.makedirs(self.pretrain_dir, exist_ok=True)
|
||||
self.logger = get_logger(self.args['log_dir'], name=self.model.__class__.__name__, debug=self.args['debug'])
|
||||
self.logger.info(f"Experiment log path in: {self.args['log_dir']}")
|
||||
|
||||
if self.args['teacher_stu']:
|
||||
self.tmodel = self.loadTeacher(args)
|
||||
else:
|
||||
self.logger.info(f"当前使用预训练模式,预训练后请移动教师模型到"
|
||||
f"./pre-train/{args['model']['type']}/{args['data']['type']}/best_model.pth"
|
||||
f"然后在config中配置train.teacher_stu模式为True开启蒸馏模式")
|
||||
|
||||
|
||||
def _run_epoch(self, epoch, dataloader, mode):
|
||||
# self.tmodel.eval()
|
||||
if mode == 'train':
|
||||
self.model.train()
|
||||
optimizer_step = True
|
||||
else:
|
||||
self.model.eval()
|
||||
optimizer_step = False
|
||||
|
||||
total_loss = 0
|
||||
epoch_time = time.time()
|
||||
|
||||
with torch.set_grad_enabled(optimizer_step):
|
||||
with tqdm(total=len(dataloader), desc=f'{mode.capitalize()} Epoch {epoch}') as pbar:
|
||||
for batch_idx, (data, target) in enumerate(dataloader):
|
||||
if self.args['teacher_stu']:
|
||||
label = target[..., :self.args['output_dim']]
|
||||
output, out_, _ = self.model(data)
|
||||
gout, tout, sout = self.tmodel(data)
|
||||
|
||||
if self.args['real_value']:
|
||||
output = self.scaler.inverse_transform(output)
|
||||
|
||||
loss1 = self.loss(output, label)
|
||||
scl = self.loss_cls(out_, sout)
|
||||
kl_loss = nn.KLDivLoss(reduction="batchmean", log_target=True).cuda()
|
||||
gout = F.log_softmax(gout, dim=-1).cuda()
|
||||
mlp_emb_ = F.log_softmax(output, dim=-1).cuda()
|
||||
tkloss = kl_loss(mlp_emb_.cuda().float(), gout.cuda().float())
|
||||
loss = loss1 + 10 * tkloss + 1 * scl
|
||||
|
||||
else:
|
||||
label = target[..., :self.args['output_dim']]
|
||||
output, out_, _ = self.model(data)
|
||||
|
||||
if self.args['real_value']:
|
||||
output = self.scaler.inverse_transform(output)
|
||||
|
||||
loss = self.loss(output, label)
|
||||
|
||||
if optimizer_step and self.optimizer is not None:
|
||||
self.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
|
||||
if self.args['grad_norm']:
|
||||
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args['max_grad_norm'])
|
||||
self.optimizer.step()
|
||||
|
||||
total_loss += loss.item()
|
||||
|
||||
if mode == 'train' and (batch_idx + 1) % self.args['log_step'] == 0:
|
||||
self.logger.info(
|
||||
f'Train Epoch {epoch}: {batch_idx + 1}/{len(dataloader)} Loss: {loss.item():.6f}')
|
||||
|
||||
# 更新 tqdm 的进度
|
||||
pbar.update(1)
|
||||
pbar.set_postfix(loss=loss.item())
|
||||
|
||||
avg_loss = total_loss / len(dataloader)
|
||||
self.logger.info(
|
||||
f'{mode.capitalize()} Epoch {epoch}: average Loss: {avg_loss:.6f}, time: {time.time() - epoch_time:.2f} s')
|
||||
return avg_loss
|
||||
|
||||
def train_epoch(self, epoch):
|
||||
return self._run_epoch(epoch, self.train_loader, 'train')
|
||||
|
||||
def val_epoch(self, epoch):
|
||||
return self._run_epoch(epoch, self.val_loader or self.test_loader, 'val')
|
||||
|
||||
def test_epoch(self, epoch):
|
||||
return self._run_epoch(epoch, self.test_loader, 'test')
|
||||
|
||||
def train(self):
|
||||
best_model, best_test_model = None, None
|
||||
best_loss, best_test_loss = float('inf'), float('inf')
|
||||
not_improved_count = 0
|
||||
|
||||
self.logger.info("Training process started")
|
||||
for epoch in range(1, self.args['epochs'] + 1):
|
||||
train_epoch_loss = self.train_epoch(epoch)
|
||||
val_epoch_loss = self.val_epoch(epoch)
|
||||
test_epoch_loss = self.test_epoch(epoch)
|
||||
|
||||
if train_epoch_loss > 1e6:
|
||||
self.logger.warning('Gradient explosion detected. Ending...')
|
||||
break
|
||||
|
||||
if val_epoch_loss < best_loss:
|
||||
best_loss = val_epoch_loss
|
||||
not_improved_count = 0
|
||||
best_model = copy.deepcopy(self.model.state_dict())
|
||||
torch.save(best_model, self.best_path)
|
||||
torch.save(best_model, self.pretrain_path)
|
||||
self.logger.info('Best validation model saved!')
|
||||
else:
|
||||
not_improved_count += 1
|
||||
|
||||
if self.args['early_stop'] and not_improved_count == self.args['early_stop_patience']:
|
||||
self.logger.info(
|
||||
f"Validation performance didn't improve for {self.args['early_stop_patience']} epochs. Training stops.")
|
||||
break
|
||||
|
||||
if test_epoch_loss < best_test_loss:
|
||||
best_test_loss = test_epoch_loss
|
||||
best_test_model = copy.deepcopy(self.model.state_dict())
|
||||
torch.save(best_test_model, self.best_test_path)
|
||||
torch.save(best_model, self.pretrain_best_path)
|
||||
|
||||
if not self.args['debug']:
|
||||
torch.save(best_model, self.best_path)
|
||||
torch.save(best_test_model, self.best_test_path)
|
||||
self.logger.info(f"Best models saved at {self.best_path} and {self.best_test_path}")
|
||||
|
||||
self._finalize_training(best_model, best_test_model)
|
||||
|
||||
def _finalize_training(self, best_model, best_test_model):
|
||||
self.model.load_state_dict(best_model)
|
||||
self.logger.info("Testing on best validation model")
|
||||
self.test(self.model, self.args, self.test_loader, self.scaler, self.logger)
|
||||
|
||||
self.model.load_state_dict(best_test_model)
|
||||
self.logger.info("Testing on best test model")
|
||||
self.test(self.model, self.args, self.test_loader, self.scaler, self.logger)
|
||||
|
||||
def loadTeacher(self, args):
|
||||
model_path = f'./pre-train/{args["model"]["type"]}/{args["data"]["type"]}/best_model.pth'
|
||||
try:
|
||||
# 尝试加载教师模型权重
|
||||
state_dict = torch.load(model_path)
|
||||
self.logger.info(f"成功加载教师模型权重: {model_path}")
|
||||
|
||||
# 初始化并返回教师模型
|
||||
args['model']['model_type'] = 'teacher'
|
||||
tmodel = STMLP(args['model'])
|
||||
tmodel = tmodel.to(args['device'])
|
||||
tmodel.load_state_dict(state_dict, strict=False)
|
||||
return tmodel
|
||||
|
||||
except FileNotFoundError:
|
||||
# 如果找不到权重文件,记录日志并修改 args
|
||||
self.logger.error(
|
||||
f"未找到教师模型权重文件: {model_path}。切换到预训练模式训练老师权重。\n"
|
||||
f"在预训练完成后,再次启动模型则为蒸馏模式")
|
||||
self.args['teacher_stu'] = False
|
||||
return None
|
||||
|
||||
|
||||
def loss_cls(self, x1, x2):
|
||||
temperature = 0.05
|
||||
x1 = F.normalize(x1, p=2, dim=-1)
|
||||
x2 = F.normalize(x2, p=2, dim=-1)
|
||||
weight = F.cosine_similarity(x1, x2, dim=-1)
|
||||
batch_size = x1.size()[0]
|
||||
# neg score
|
||||
out = torch.cat([x1, x2], dim=0)
|
||||
neg = torch.exp(torch.matmul(out, out.transpose(2, 3).contiguous()) / temperature)
|
||||
|
||||
pos = torch.exp(torch.sum(x1 * x2, dim=-1) * weight / temperature)
|
||||
# pos = torch.exp(torch.sum(x1 * x2, dim=-1) / temperature)
|
||||
pos = torch.cat([pos, pos], dim=0).sum(dim=1)
|
||||
|
||||
Ng = neg.sum(dim=-1).sum(dim=1)
|
||||
|
||||
loss = (- torch.log(pos / (pos + Ng))).mean()
|
||||
|
||||
return loss
|
||||
|
||||
@staticmethod
|
||||
def test(model, args, data_loader, scaler, logger, path=None):
|
||||
if path:
|
||||
checkpoint = torch.load(path)
|
||||
model.load_state_dict(checkpoint['state_dict'])
|
||||
model.to(args['device'])
|
||||
|
||||
model.eval()
|
||||
y_pred, y_true = [], []
|
||||
|
||||
with torch.no_grad():
|
||||
for data, target in data_loader:
|
||||
label = target[..., :args['output_dim']]
|
||||
output, _, _ = model(data)
|
||||
y_pred.append(output)
|
||||
y_true.append(label)
|
||||
|
||||
if args['real_value']:
|
||||
y_pred = scaler.inverse_transform(torch.cat(y_pred, dim=0))
|
||||
else:
|
||||
y_pred = torch.cat(y_pred, dim=0)
|
||||
y_true = torch.cat(y_true, dim=0)
|
||||
|
||||
# 你在这里需要把y_pred和y_true保存下来
|
||||
# torch.save(y_pred, "./test/PEMS07/y_pred_D.pt") # [3566,12,170,1]
|
||||
# torch.save(y_true, "./test/PEMSD8/y_true.pt") # [3566,12,170,1]
|
||||
|
||||
for t in range(y_true.shape[1]):
|
||||
mae, rmse, mape = all_metrics(y_pred[:, t, ...], y_true[:, t, ...],
|
||||
args['mae_thresh'], args['mape_thresh'])
|
||||
logger.info(f"Horizon {t + 1:02d}, MAE: {mae:.4f}, RMSE: {rmse:.4f}, MAPE: {mape:.4f}")
|
||||
|
||||
mae, rmse, mape = all_metrics(y_pred, y_true, args['mae_thresh'], args['mape_thresh'])
|
||||
logger.info(f"Average Horizon, MAE: {mae:.4f}, RMSE: {rmse:.4f}, MAPE: {mape:.4f}")
|
||||
|
||||
@staticmethod
|
||||
def _compute_sampling_threshold(global_step, k):
|
||||
return k / (k + math.exp(global_step / k))
|
||||
|
||||
|
||||
|
|
@ -2,6 +2,7 @@ from trainer.Trainer import Trainer
|
|||
from trainer.cdeTrainer.cdetrainer import Trainer as cdeTrainer
|
||||
from trainer.DCRNN_Trainer import Trainer as DCRNN_Trainer
|
||||
from trainer.PDG2SEQ_Trainer import Trainer as PDG2SEQ_Trainer
|
||||
from trainer.STMLP_Trainer import Trainer as STMLP_Trainer
|
||||
from trainer.E32Trainer import Trainer as EXP_Trainer
|
||||
|
||||
|
||||
|
|
@ -14,6 +15,8 @@ def select_trainer(model, loss, optimizer, train_loader, val_loader, test_loader
|
|||
lr_scheduler)
|
||||
case 'PDG2SEQ': return PDG2SEQ_Trainer(model, loss, optimizer, train_loader, val_loader, test_loader, scaler, args['train'],
|
||||
lr_scheduler)
|
||||
case 'STMLP': return STMLP_Trainer(model, loss, optimizer, train_loader, val_loader, test_loader, scaler, args,
|
||||
lr_scheduler)
|
||||
case 'EXP': return EXP_Trainer(model, loss, optimizer, train_loader, val_loader, test_loader, scaler, args['train'],
|
||||
lr_scheduler)
|
||||
case _: return Trainer(model, loss, optimizer, train_loader, val_loader, test_loader, scaler, args['train'],
|
||||
|
|
|
|||
|
|
@ -299,7 +299,7 @@ def read_data(args):
|
|||
'pems03': ['PEMS03/pems03.npz', 'PEMS03/distance.csv'],
|
||||
'pems04': ['PEMS04/pems04.npz', 'PEMS04/distance.csv'],
|
||||
'pems07': ['PEMS07/pems07.npz', 'PEMS07/distance.csv'],
|
||||
'pems08': ['PEMS08/pems08.npz', 'PEMS08/distance.csv'],
|
||||
'pems08': ['PEMSD8/pems08.npz', 'PEMSD8/distance.csv'],
|
||||
'pemsbay': ['PEMSBAY/pems_bay.npz', 'PEMSBAY/distance.csv'],
|
||||
'pemsD7M': ['PeMSD7M/PeMSD7M.npz', 'PeMSD7M/distance.csv'],
|
||||
'pemsD7L': ['PeMSD7L/PeMSD7L.npz', 'PeMSD7L/distance.csv']
|
||||
|
|
|
|||
Loading…
Reference in New Issue