352 lines
14 KiB
Python
352 lines
14 KiB
Python
import math
|
||
import os
|
||
import time
|
||
import copy
|
||
import psutil
|
||
from tqdm import tqdm
|
||
|
||
import torch
|
||
from lib.logger import get_logger
|
||
from lib.loss_function import all_metrics
|
||
from model.STEP.step_loss import step_loss
|
||
|
||
|
||
class TrainingStats:
|
||
def __init__(self, device):
|
||
self.device = device
|
||
self.reset()
|
||
|
||
def reset(self):
|
||
self.gpu_mem_usage_list = []
|
||
self.cpu_mem_usage_list = []
|
||
self.train_time_list = []
|
||
self.infer_time_list = []
|
||
self.total_iters = 0
|
||
self.start_time = None
|
||
self.end_time = None
|
||
|
||
def start_training(self):
|
||
self.start_time = time.time()
|
||
|
||
def end_training(self):
|
||
self.end_time = time.time()
|
||
|
||
def record_step_time(self, duration, mode):
|
||
"""记录单步耗时和总迭代次数"""
|
||
if mode == 'train':
|
||
self.train_time_list.append(duration)
|
||
else:
|
||
self.infer_time_list.append(duration)
|
||
self.total_iters += 1
|
||
|
||
def record_memory_usage(self):
|
||
"""记录当前 GPU 和 CPU 内存占用"""
|
||
process = psutil.Process(os.getpid())
|
||
cpu_mem = process.memory_info().rss / (1024 ** 2)
|
||
|
||
if torch.cuda.is_available():
|
||
gpu_mem = torch.cuda.max_memory_allocated(device=self.device) / (1024 ** 2)
|
||
torch.cuda.reset_peak_memory_stats(device=self.device)
|
||
else:
|
||
gpu_mem = 0.0
|
||
|
||
self.cpu_mem_usage_list.append(cpu_mem)
|
||
self.gpu_mem_usage_list.append(gpu_mem)
|
||
|
||
def report(self, logger):
|
||
"""在训练结束时输出汇总统计"""
|
||
if not self.start_time or not self.end_time:
|
||
logger.warning("TrainingStats: start/end time not recorded properly.")
|
||
return
|
||
|
||
total_time = self.end_time - self.start_time
|
||
avg_gpu_mem = sum(self.gpu_mem_usage_list) / len(self.gpu_mem_usage_list) if self.gpu_mem_usage_list else 0
|
||
avg_cpu_mem = sum(self.cpu_mem_usage_list) / len(self.cpu_mem_usage_list) if self.cpu_mem_usage_list else 0
|
||
avg_train_time = sum(self.train_time_list) / len(self.train_time_list) if self.train_time_list else 0
|
||
avg_infer_time = sum(self.infer_time_list) / len(self.infer_time_list) if self.infer_time_list else 0
|
||
iters_per_sec = self.total_iters / total_time if total_time > 0 else 0
|
||
|
||
logger.info("===== Training Summary =====")
|
||
logger.info(f"Total training time: {total_time:.2f} s")
|
||
logger.info(f"Total iterations: {self.total_iters}")
|
||
logger.info(f"Average iterations per second: {iters_per_sec:.2f}")
|
||
logger.info(f"Average GPU Memory Usage: {avg_gpu_mem:.2f} MB")
|
||
logger.info(f"Average CPU Memory Usage: {avg_cpu_mem:.2f} MB")
|
||
if avg_train_time:
|
||
logger.info(f"Average training step time: {avg_train_time*1000:.2f} ms")
|
||
if avg_infer_time:
|
||
logger.info(f"Average inference step time: {avg_infer_time*1000:.2f} ms")
|
||
|
||
|
||
class Trainer:
|
||
def __init__(self, model, loss, optimizer, train_loader, val_loader, test_loader,
|
||
scaler, args, lr_scheduler=None):
|
||
self.model = model
|
||
self.loss = loss
|
||
self.optimizer = optimizer
|
||
self.train_loader = train_loader
|
||
self.val_loader = val_loader
|
||
self.test_loader = test_loader
|
||
self.scaler = scaler
|
||
self.args = args
|
||
self.lr_scheduler = lr_scheduler
|
||
self.train_per_epoch = len(train_loader)
|
||
self.val_per_epoch = len(val_loader) if val_loader else 0
|
||
|
||
# Paths for saving models and logs
|
||
log_dir = args.get('log_dir', './logs/STEP')
|
||
os.makedirs(log_dir, exist_ok=True) # 确保目录存在
|
||
self.best_path = os.path.join(log_dir, 'best_model.pth')
|
||
self.best_test_path = os.path.join(log_dir, 'best_test_model.pth')
|
||
self.loss_figure_path = os.path.join(log_dir, 'loss.png')
|
||
|
||
# Initialize logger
|
||
log_dir = args.get('log_dir', './logs/STEP')
|
||
self.logger = get_logger(log_dir, name='STEP_Trainer')
|
||
|
||
# Initialize training stats
|
||
self.device = next(model.parameters()).device
|
||
self.stats = TrainingStats(self.device)
|
||
|
||
def train_epoch(self, epoch):
|
||
self.model.train()
|
||
total_loss = 0
|
||
total_metrics = {}
|
||
|
||
with tqdm(self.train_loader, desc=f'Epoch {epoch}') as pbar:
|
||
for batch_idx, (data, target) in enumerate(pbar):
|
||
start_time = time.time()
|
||
|
||
data = data.to(self.device)
|
||
target = target.to(self.device)
|
||
|
||
self.optimizer.zero_grad()
|
||
|
||
# STEP模型的前向传播
|
||
output = self.model(data)
|
||
|
||
# 计算损失(这里需要根据STEP模型的具体输出调整)
|
||
# STEP模型返回多个输出,包括预测值、Bernoulli参数等
|
||
if isinstance(output, tuple):
|
||
prediction = output[0]
|
||
# 如果模型返回了其他参数,可以在这里处理
|
||
else:
|
||
prediction = output
|
||
|
||
# 使用标准损失函数
|
||
if callable(self.loss) and hasattr(self.loss, '__call__'):
|
||
# 如果是一个可调用对象(比如masked_mae_loss返回的函数)
|
||
if hasattr(self.loss, 'func_name') or 'function' in str(type(self.loss)):
|
||
loss_fn = self.loss(None, None) # 创建实际的损失函数
|
||
loss = loss_fn(prediction, target)
|
||
else:
|
||
loss = self.loss(prediction, target)
|
||
else:
|
||
# 如果是PyTorch的损失函数
|
||
loss = self.loss(prediction, target)
|
||
|
||
loss.backward()
|
||
|
||
# 梯度裁剪
|
||
if self.args.get('clip_grad_norm', 0) > 0:
|
||
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args['clip_grad_norm'])
|
||
|
||
self.optimizer.step()
|
||
|
||
# 记录统计信息
|
||
step_time = time.time() - start_time
|
||
self.stats.record_step_time(step_time, 'train')
|
||
|
||
total_loss += loss.item()
|
||
|
||
# 计算指标
|
||
mae, rmse, mape = all_metrics(prediction, target, None, 0.0)
|
||
metrics = {'mae': mae.item(), 'rmse': rmse.item(), 'mape': mape.item()}
|
||
for key, value in metrics.items():
|
||
if key not in total_metrics:
|
||
total_metrics[key] = 0
|
||
total_metrics[key] += value
|
||
|
||
# 更新进度条
|
||
pbar.set_postfix({
|
||
'Loss': f'{loss.item():.4f}',
|
||
'MAE': f'{metrics.get("mae", 0):.4f}',
|
||
'RMSE': f'{metrics.get("rmse", 0):.4f}'
|
||
})
|
||
|
||
# 记录内存使用
|
||
if batch_idx % 100 == 0:
|
||
self.stats.record_memory_usage()
|
||
|
||
# 计算平均损失和指标
|
||
avg_loss = total_loss / len(self.train_loader)
|
||
avg_metrics = {key: value / len(self.train_loader) for key, value in total_metrics.items()}
|
||
|
||
return avg_loss, avg_metrics
|
||
|
||
def val_epoch(self, epoch):
|
||
self.model.eval()
|
||
total_loss = 0
|
||
total_metrics = {}
|
||
|
||
with torch.no_grad():
|
||
with tqdm(self.val_loader, desc=f'Validation {epoch}') as pbar:
|
||
for batch_idx, (data, target) in enumerate(pbar):
|
||
start_time = time.time()
|
||
|
||
data = data.to(self.device)
|
||
target = target.to(self.device)
|
||
|
||
# STEP模型的前向传播
|
||
output = self.model(data)
|
||
|
||
if isinstance(output, tuple):
|
||
prediction = output[0]
|
||
else:
|
||
prediction = output
|
||
|
||
# 计算损失
|
||
if callable(self.loss) and hasattr(self.loss, '__call__'):
|
||
# 如果是一个可调用对象(比如masked_mae_loss返回的函数)
|
||
if hasattr(self.loss, 'func_name') or 'function' in str(type(self.loss)):
|
||
loss_fn = self.loss(None, None) # 创建实际的损失函数
|
||
loss = loss_fn(prediction, target)
|
||
else:
|
||
loss = self.loss(prediction, target)
|
||
else:
|
||
# 如果是PyTorch的损失函数
|
||
loss = self.loss(prediction, target)
|
||
|
||
# 记录统计信息
|
||
step_time = time.time() - start_time
|
||
self.stats.record_step_time(step_time, 'val')
|
||
|
||
total_loss += loss.item()
|
||
|
||
# 计算指标
|
||
mae, rmse, mape = all_metrics(prediction, target, None, 0.0)
|
||
metrics = {'mae': mae.item(), 'rmse': rmse.item(), 'mape': mape.item()}
|
||
for key, value in metrics.items():
|
||
if key not in total_metrics:
|
||
total_metrics[key] = 0
|
||
total_metrics[key] += value
|
||
|
||
# 更新进度条
|
||
pbar.set_postfix({
|
||
'Loss': f'{loss.item():.4f}',
|
||
'MAE': f'{metrics.get("mae", 0):.4f}',
|
||
'RMSE': f'{metrics.get("rmse", 0):.4f}'
|
||
})
|
||
|
||
# 计算平均损失和指标
|
||
avg_loss = total_loss / len(self.val_loader)
|
||
avg_metrics = {key: value / len(self.val_loader) for key, value in total_metrics.items()}
|
||
|
||
return avg_loss, avg_metrics
|
||
|
||
def test_epoch(self, epoch):
|
||
self.model.eval()
|
||
total_loss = 0
|
||
total_metrics = {}
|
||
|
||
with torch.no_grad():
|
||
with tqdm(self.test_loader, desc=f'Test {epoch}') as pbar:
|
||
for batch_idx, (data, target) in enumerate(pbar):
|
||
start_time = time.time()
|
||
|
||
data = data.to(self.device)
|
||
target = target.to(self.device)
|
||
|
||
# STEP模型的前向传播
|
||
output = self.model(data)
|
||
|
||
if isinstance(output, tuple):
|
||
prediction = output[0]
|
||
else:
|
||
prediction = output
|
||
|
||
# 计算损失
|
||
if callable(self.loss) and hasattr(self.loss, '__call__'):
|
||
# 如果是一个可调用对象(比如masked_mae_loss返回的函数)
|
||
if hasattr(self.loss, 'func_name') or 'function' in str(type(self.loss)):
|
||
loss_fn = self.loss(None, None) # 创建实际的损失函数
|
||
loss = loss_fn(prediction, target)
|
||
else:
|
||
loss = self.loss(prediction, target)
|
||
else:
|
||
# 如果是PyTorch的损失函数
|
||
loss = self.loss(prediction, target)
|
||
|
||
# 记录统计信息
|
||
step_time = time.time() - start_time
|
||
self.stats.record_step_time(step_time, 'test')
|
||
|
||
total_loss += loss.item()
|
||
|
||
# 计算指标
|
||
mae, rmse, mape = all_metrics(prediction, target, None, 0.0)
|
||
metrics = {'mae': mae.item(), 'rmse': rmse.item(), 'mape': mape.item()}
|
||
for key, value in metrics.items():
|
||
if key not in total_metrics:
|
||
total_metrics[key] = 0
|
||
total_metrics[key] += value
|
||
|
||
# 更新进度条
|
||
pbar.set_postfix({
|
||
'Loss': f'{loss.item():.4f}',
|
||
'MAE': f'{metrics.get("mae", 0):.4f}',
|
||
'RMSE': f'{metrics.get("rmse", 0):.4f}'
|
||
})
|
||
|
||
# 计算平均损失和指标
|
||
avg_loss = total_loss / len(self.test_loader)
|
||
avg_metrics = {key: value / len(self.test_loader) for key, value in total_metrics.items()}
|
||
|
||
return avg_loss, avg_metrics
|
||
|
||
def train(self):
|
||
self.stats.start_training()
|
||
|
||
best_val_loss = float('inf')
|
||
best_test_loss = float('inf')
|
||
|
||
for epoch in range(self.args['epochs']):
|
||
# 训练
|
||
train_loss, train_metrics = self.train_epoch(epoch)
|
||
|
||
# 验证
|
||
if self.val_loader:
|
||
val_loss, val_metrics = self.val_epoch(epoch)
|
||
|
||
# 保存最佳模型
|
||
if val_loss < best_val_loss:
|
||
best_val_loss = val_loss
|
||
torch.save(self.model.state_dict(), self.best_path)
|
||
self.logger.info(f'Epoch {epoch}: Best validation loss: {val_loss:.4f}')
|
||
|
||
# 测试
|
||
if self.test_loader:
|
||
test_loss, test_metrics = self.test_epoch(epoch)
|
||
|
||
# 保存最佳测试模型
|
||
if test_loss < best_test_loss:
|
||
best_test_loss = test_loss
|
||
torch.save(self.model.state_dict(), self.best_test_path)
|
||
self.logger.info(f'Epoch {epoch}: Best test loss: {test_loss:.4f}')
|
||
|
||
# 学习率调度
|
||
if self.lr_scheduler:
|
||
self.lr_scheduler.step()
|
||
|
||
# 记录日志
|
||
self.logger.info(f'Epoch {epoch}: Train Loss: {train_loss:.4f}, Train MAE: {train_metrics.get("mae", 0):.4f}')
|
||
if self.val_loader:
|
||
self.logger.info(f'Epoch {epoch}: Val Loss: {val_loss:.4f}, Val MAE: {val_metrics.get("mae", 0):.4f}')
|
||
if self.test_loader:
|
||
self.logger.info(f'Epoch {epoch}: Test Loss: {test_loss:.4f}, Test MAE: {test_metrics.get("mae", 0):.4f}')
|
||
|
||
self.stats.end_training()
|
||
self.stats.report(self.logger)
|
||
|
||
return best_val_loss, best_test_loss
|