Cleaned up code, fixed bugs in implementation, seems like it starts training with GRU
This commit is contained in:
parent
f96a8c0d59
commit
9834b12d5a
|
|
@ -4,25 +4,8 @@ import torch.nn as nn
|
|||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
|
||||
# class DCRNNModel:
|
||||
# def __init__(self, is_training, adj_mx, **model_kwargs):
|
||||
# self.adj_mx = adj_mx
|
||||
# self.is_training = is_training
|
||||
# self.max_diffusion_step = int(model_kwargs.get('max_diffusion_step', 2))
|
||||
# self.cl_decay_steps = int(model_kwargs.get('cl_decay_steps', 1000))
|
||||
# self.filter_type = model_kwargs.get('filter_type', 'laplacian')
|
||||
# # self.max_grad_norm = float(model_kwargs.get('max_grad_norm', 5.0))
|
||||
# self.num_nodes = int(model_kwargs.get('num_nodes', 1))
|
||||
# self.num_rnn_layers = int(model_kwargs.get('num_rnn_layers', 1))
|
||||
# self.rnn_units = int(model_kwargs.get('rnn_units'))
|
||||
# self.hidden_state_size = self.num_nodes * self.rnn_units
|
||||
|
||||
|
||||
class EncoderModel(nn.Module):
|
||||
class DCRNNModel:
|
||||
def __init__(self, is_training, adj_mx, **model_kwargs):
|
||||
# super().__init__(is_training, adj_mx, **model_kwargs)
|
||||
# https://pytorch.org/docs/stable/nn.html#gru
|
||||
super().__init__()
|
||||
self.adj_mx = adj_mx
|
||||
self.is_training = is_training
|
||||
self.max_diffusion_step = int(model_kwargs.get('max_diffusion_step', 2))
|
||||
|
|
@ -33,22 +16,34 @@ class EncoderModel(nn.Module):
|
|||
self.num_rnn_layers = int(model_kwargs.get('num_rnn_layers', 1))
|
||||
self.rnn_units = int(model_kwargs.get('rnn_units'))
|
||||
self.hidden_state_size = self.num_nodes * self.rnn_units
|
||||
|
||||
|
||||
class EncoderModel(nn.Module, DCRNNModel):
|
||||
def __init__(self, is_training, adj_mx, **model_kwargs):
|
||||
# super().__init__(is_training, adj_mx, **model_kwargs)
|
||||
# https://pytorch.org/docs/stable/nn.html#gru
|
||||
nn.Module.__init__(self)
|
||||
DCRNNModel.__init__(self, is_training, adj_mx, **model_kwargs)
|
||||
self.input_dim = int(model_kwargs.get('input_dim', 1))
|
||||
self.seq_len = int(model_kwargs.get('seq_len')) # for the encoder
|
||||
self.dcgru_layers = [nn.GRUCell(input_size=self.num_nodes * self.input_dim,
|
||||
hidden_size=self.hidden_state_size,
|
||||
bias=True)] + [nn.GRUCell(input_size=self.hidden_state_size,
|
||||
hidden_size=self.hidden_state_size,
|
||||
bias=True) for _ in range(self.num_rnn_layers - 1)]
|
||||
self.dcgru_layers = nn.ModuleList([nn.GRUCell(input_size=self.num_nodes * self.input_dim,
|
||||
hidden_size=self.hidden_state_size,
|
||||
bias=True)] + [
|
||||
nn.GRUCell(input_size=self.hidden_state_size,
|
||||
hidden_size=self.hidden_state_size,
|
||||
bias=True) for _ in
|
||||
range(self.num_rnn_layers - 1)])
|
||||
|
||||
def forward(self, inputs, hidden_state=None):
|
||||
"""
|
||||
Encoder forward pass.
|
||||
|
||||
:param inputs: shape (batch_size, self.num_nodes * self.input_dim)
|
||||
:param hidden_state: (num_layers, batch_size, self.hidden_state_size) -> optional, zeros if not provided
|
||||
:param hidden_state: (num_layers, batch_size, self.hidden_state_size)
|
||||
optional, zeros if not provided
|
||||
:return: output: # shape (batch_size, self.hidden_state_size)
|
||||
hidden_state # shape (num_layers, batch_size, self.hidden_state_size) (lower indices mean lower layers)
|
||||
hidden_state # shape (num_layers, batch_size, self.hidden_state_size)
|
||||
(lower indices mean lower layers)
|
||||
"""
|
||||
batch_size, _ = inputs.size()
|
||||
if hidden_state is None:
|
||||
|
|
@ -57,17 +52,18 @@ class EncoderModel(nn.Module):
|
|||
hidden_states = []
|
||||
output = inputs
|
||||
for layer_num, dcgru_layer in enumerate(self.dcgru_layers):
|
||||
hidden_state = dcgru_layer(output, hidden_state)
|
||||
hidden_states.append(hidden_state)
|
||||
output = hidden_state
|
||||
next_hidden_state = dcgru_layer(output, hidden_state[layer_num])
|
||||
hidden_states.append(next_hidden_state)
|
||||
output = next_hidden_state
|
||||
|
||||
return output, torch.cat(hidden_states, dim=1) # runs in O(num_layers) so not too slow # todo: check dim
|
||||
return output, torch.stack(hidden_states) # runs in O(num_layers) so not too slow
|
||||
|
||||
|
||||
class DecoderModel(nn.Module):
|
||||
class DecoderModel(nn.Module, DCRNNModel):
|
||||
def __init__(self, is_training, adj_mx, **model_kwargs):
|
||||
# super().__init__(is_training, adj_mx, **model_kwargs)
|
||||
super().__init__()
|
||||
nn.Module.__init__(self)
|
||||
DCRNNModel.__init__(self, is_training, adj_mx, **model_kwargs)
|
||||
self.adj_mx = adj_mx
|
||||
self.is_training = is_training
|
||||
self.max_diffusion_step = int(model_kwargs.get('max_diffusion_step', 2))
|
||||
|
|
@ -82,32 +78,30 @@ class DecoderModel(nn.Module):
|
|||
self.use_curriculum_learning = bool(model_kwargs.get('use_curriculum_learning', False))
|
||||
self.horizon = int(model_kwargs.get('horizon', 1)) # for the decoder
|
||||
self.projection_layer = nn.Linear(self.hidden_state_size, self.num_nodes * self.output_dim)
|
||||
self.dcgru_layers = [nn.GRUCell(input_size=self.num_nodes * self.output_dim,
|
||||
hidden_size=self.hidden_state_size,
|
||||
bias=True)] + [nn.GRUCell(input_size=self.hidden_state_size,
|
||||
hidden_size=self.hidden_state_size,
|
||||
bias=True) for _ in
|
||||
range(self.num_rnn_layers - 1)]
|
||||
self.dcgru_layers = nn.ModuleList([nn.GRUCell(input_size=self.num_nodes * self.output_dim,
|
||||
hidden_size=self.hidden_state_size,
|
||||
bias=True)] + [
|
||||
nn.GRUCell(input_size=self.hidden_state_size,
|
||||
hidden_size=self.hidden_state_size,
|
||||
bias=True) for _ in
|
||||
range(self.num_rnn_layers - 1)])
|
||||
|
||||
def forward(self, inputs, hidden_state=None):
|
||||
"""
|
||||
Decoder forward pass.
|
||||
|
||||
:param inputs: shape (batch_size, self.num_nodes * self.output_dim)
|
||||
:param hidden_state: (num_layers, batch_size, self.hidden_state_size) -> optional, zeros if not provided
|
||||
:param hidden_state: (num_layers, batch_size, self.hidden_state_size)
|
||||
optional, zeros if not provided
|
||||
:return: output: # shape (batch_size, self.num_nodes * self.output_dim)
|
||||
hidden_state # shape (num_layers, batch_size, self.hidden_state_size) (lower indices mean lower layers)
|
||||
hidden_state # shape (num_layers, batch_size, self.hidden_state_size)
|
||||
(lower indices mean lower layers)
|
||||
"""
|
||||
batch_size, _ = inputs.size()
|
||||
if hidden_state is None:
|
||||
hidden_state = torch.zeros((self.num_rnn_layers, batch_size, self.hidden_state_size),
|
||||
device=device)
|
||||
hidden_states = []
|
||||
output = inputs
|
||||
for layer_num, dcgru_layer in enumerate(self.dcgru_layers):
|
||||
hidden_state = dcgru_layer(output, hidden_state)
|
||||
hidden_states.append(hidden_state)
|
||||
output = hidden_state
|
||||
next_hidden_state = dcgru_layer(output, hidden_state[layer_num])
|
||||
hidden_states.append(next_hidden_state)
|
||||
output = next_hidden_state
|
||||
|
||||
return self.projection_layer(output), torch.cat(hidden_states,
|
||||
dim=1) # runs in O(num_layers) so not too slow #todo: check dim
|
||||
return self.projection_layer(output), torch.stack(hidden_states)
|
||||
|
|
|
|||
|
|
@ -7,6 +7,8 @@ import torch
|
|||
from lib import utils
|
||||
from model.pytorch.dcrnn_model import EncoderModel, DecoderModel
|
||||
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
|
||||
class DCRNNSupervisor:
|
||||
def __init__(self, adj_mx, **kwargs):
|
||||
|
|
@ -87,7 +89,8 @@ class DCRNNSupervisor:
|
|||
batch_size = inputs.size(1)
|
||||
|
||||
inputs = inputs.view(self.seq_len, batch_size, self.num_nodes * self.input_dim)
|
||||
labels = labels.view(self.horizon, batch_size, self.num_nodes * self.output_dim)
|
||||
labels = labels[..., :self.output_dim].view(self.horizon, batch_size,
|
||||
self.num_nodes * self.output_dim)
|
||||
|
||||
loss = 0
|
||||
|
||||
|
|
@ -95,6 +98,7 @@ class DCRNNSupervisor:
|
|||
for t in range(self.seq_len):
|
||||
_, encoder_hidden_state = self.encoder_model.forward(inputs[t], encoder_hidden_state)
|
||||
|
||||
self._logger.info("Encoder complete, starting decoder")
|
||||
go_symbol = torch.zeros((batch_size, self.num_nodes * self.output_dim))
|
||||
|
||||
decoder_hidden_state = encoder_hidden_state
|
||||
|
|
@ -113,6 +117,7 @@ class DCRNNSupervisor:
|
|||
loss += criterion(self.standard_scaler.inverse_transform(decoder_output),
|
||||
self.standard_scaler.inverse_transform(labels[t]))
|
||||
|
||||
self._logger.info("Decoder complete, starting backprop")
|
||||
loss.backward()
|
||||
encoder_optimizer.step()
|
||||
decoder_optimizer.step()
|
||||
|
|
@ -135,16 +140,26 @@ class DCRNNSupervisor:
|
|||
|
||||
start_time = time.time()
|
||||
|
||||
for x, y in train_iterator:
|
||||
loss = self._train_one_batch(x, y, batches_seen, encoder_optimizer, decoder_optimizer, criterion)
|
||||
for _, (x, y) in enumerate(train_iterator):
|
||||
x = torch.from_numpy(x).float()
|
||||
y = torch.from_numpy(y).float()
|
||||
self._logger.debug("X: {}".format(x.size()))
|
||||
self._logger.debug("y: {}".format(y.size()))
|
||||
x = x.permute(1, 0, 2, 3)
|
||||
y = y.permute(1, 0, 2, 3)
|
||||
loss = self._train_one_batch(x, y, batches_seen, encoder_optimizer,
|
||||
decoder_optimizer, criterion)
|
||||
losses.append(loss)
|
||||
batches_seen += 1
|
||||
|
||||
end_time = time.time()
|
||||
if epoch_num % log_every == 0:
|
||||
message = 'Epoch [{}/{}] ({}) train_mae: {:.4f}, val_mae: {:.4f} lr:{:.6f} {:.1f}s'.format(
|
||||
epoch_num, epochs, batches_seen, np.mean(losses), 0.0, 0.0, (end_time - start_time))
|
||||
message = 'Epoch [{}/{}] ({}) train_mae: {:.4f}, val_mae: {:.4f} ' \
|
||||
'lr:{:.6f} {:.1f}s'.format(epoch_num, epochs, batches_seen,
|
||||
np.mean(losses), 0.0,
|
||||
0.0, (end_time - start_time))
|
||||
self._logger.info(message)
|
||||
|
||||
def _compute_sampling_threshold(self, batches_seen):
|
||||
return self.cl_decay_steps / (self.cl_decay_steps + np.exp(batches_seen / self.cl_decay_steps))
|
||||
return self.cl_decay_steps / (
|
||||
self.cl_decay_steps + np.exp(batches_seen / self.cl_decay_steps))
|
||||
|
|
|
|||
Loading…
Reference in New Issue