Implemented abstract method and changed scheme to do all layers first for each timestep
This commit is contained in:
parent
0769a3b2e2
commit
bdce241a8f
|
|
@ -22,43 +22,54 @@ class DCRNNModel(metaclass=ABC):
|
||||||
self.hidden_state_size = self.num_nodes * self.rnn_units
|
self.hidden_state_size = self.num_nodes * self.rnn_units
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
|
@property
|
||||||
def dcgru_layers(self):
|
def dcgru_layers(self):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
@staticmethod
|
def _forward_cell(self, cell_input, prev_hidden_states):
|
||||||
def _forward_layer(inputs, dcgru_layer, hidden_state):
|
"""
|
||||||
# inputs shape = (timesteps, batch_size, input_size)
|
Runs for 1 time step through all layers.
|
||||||
outputs = []
|
:param cell_input: shape (batch_size, input feature size)
|
||||||
for cell_input in inputs[:, ]:
|
:param prev_hidden_states: (num_layers, batch_size, hidden size)
|
||||||
hidden_state = dcgru_layer(cell_input, hidden_state)
|
:return: output of cell: shape(batch_size, hidden size)
|
||||||
outputs.append(hidden_state)
|
all hidden states from layer: shape(num_layers, batch_size, hidden size)
|
||||||
|
"""
|
||||||
|
hidden_states = []
|
||||||
|
output = cell_input
|
||||||
|
for layer_num, dcgru_layer in enumerate(self.dcgru_layers):
|
||||||
|
hidden_state = dcgru_layer(output, prev_hidden_states[layer_num])
|
||||||
|
hidden_states.append(hidden_state)
|
||||||
|
output = hidden_state
|
||||||
|
|
||||||
return torch.cat(outputs, dim=1) # runs in O(timesteps) not too slow
|
return output, torch.cat(hidden_states, dim=1) # runs in O(num_layers) so not too slow #todo: check dim
|
||||||
|
|
||||||
def _forward_impl(self, inputs, hidden_state):
|
def _forward_impl(self, inputs, hidden_state):
|
||||||
"""
|
"""
|
||||||
forward pass.
|
forward pass.
|
||||||
|
|
||||||
:param inputs: shape (batch_size, timesteps, num_nodes * input_dim)
|
:param inputs: shape (batch_size, timesteps, input_size)
|
||||||
:param hidden_state: (num_layers, batch_size, self.hidden_state_size) -> optional, zeros if not provided
|
:param hidden_state: (num_layers, batch_size, self.hidden_state_size) -> optional, zeros if not provided
|
||||||
:return: output: # shape (timesteps, batch_size, self.hidden_state_size)
|
:return: output: # shape (timesteps, batch_size, self.hidden_state_size)
|
||||||
hidden_state # shape (num_layers, batch_size, self.hidden_state_size) (lower indices mean lower layers)
|
hidden_state # shape (num_layers, batch_size, self.hidden_state_size) (lower indices mean lower layers)
|
||||||
"""
|
"""
|
||||||
layer_input = inputs.permute(1, 0, 2) # first axis is now timesteps
|
batch_size, timesteps, _ = inputs.size()
|
||||||
if hidden_state is None:
|
if hidden_state is None:
|
||||||
batch_size = inputs.size()[0]
|
|
||||||
hidden_state = torch.zeros((self.num_rnn_layers, batch_size, self.hidden_state_size),
|
hidden_state = torch.zeros((self.num_rnn_layers, batch_size, self.hidden_state_size),
|
||||||
device=device)
|
device=device)
|
||||||
hidden = torch.empty_like(hidden_state)
|
output = torch.empty((timesteps, batch_size, self.hidden_state_size))
|
||||||
# noinspection PyTypeChecker
|
for t in range(timesteps):
|
||||||
for layer_num, dcgru_layer in enumerate(self.dcgru_layers):
|
hidden_state = self.t_step_forward_pass(hidden_state, inputs, output, t)
|
||||||
layer_states = self._forward_layer(layer_input, dcgru_layer, hidden_state[layer_num])
|
|
||||||
# append last time step's hidden state
|
|
||||||
hidden[layer_num] = layer_states[-1]
|
|
||||||
layer_input = layer_states
|
|
||||||
|
|
||||||
output = layer_input # last layer's output
|
output = output.permute(1, 0, 2)
|
||||||
return output, hidden
|
return output, hidden_state
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def t_step_forward_pass(self, hidden_state, inputs, output, t):
|
||||||
|
"""
|
||||||
|
Implements the forward pass for timestep t.
|
||||||
|
"""
|
||||||
|
# this is to accommodate curriculum learning
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
class EncoderModel(nn.Module, DCRNNModel):
|
class EncoderModel(nn.Module, DCRNNModel):
|
||||||
|
|
@ -67,6 +78,12 @@ class EncoderModel(nn.Module, DCRNNModel):
|
||||||
# https://pytorch.org/docs/stable/nn.html#gru
|
# https://pytorch.org/docs/stable/nn.html#gru
|
||||||
self.seq_len = int(model_kwargs.get('seq_len')) # for the encoder
|
self.seq_len = int(model_kwargs.get('seq_len')) # for the encoder
|
||||||
|
|
||||||
|
def t_step_forward_pass(self, hidden_state, inputs, output, t):
|
||||||
|
cell_input = inputs[:, t, :] # (batch_size, input_size)
|
||||||
|
cell_output, hidden_state = self._forward_cell(cell_input, hidden_state)
|
||||||
|
output[t] = cell_output
|
||||||
|
return hidden_state
|
||||||
|
|
||||||
def dcgru_layers(self):
|
def dcgru_layers(self):
|
||||||
# input shape is supposed to be Input (batch_size, timesteps, num_sensor*input_dim)
|
# input shape is supposed to be Input (batch_size, timesteps, num_sensor*input_dim)
|
||||||
# first layer takes input shape and subsequent layer take input from the first layer
|
# first layer takes input shape and subsequent layer take input from the first layer
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue