Implemented abstract method and changed scheme to do all layers first for each timestep

This commit is contained in:
Chintan Shah 2019-09-30 20:32:31 -04:00
parent 0769a3b2e2
commit bdce241a8f
1 changed files with 37 additions and 20 deletions

View File

@ -22,43 +22,54 @@ class DCRNNModel(metaclass=ABC):
self.hidden_state_size = self.num_nodes * self.rnn_units self.hidden_state_size = self.num_nodes * self.rnn_units
@abstractmethod @abstractmethod
@property
def dcgru_layers(self): def dcgru_layers(self):
pass pass
@staticmethod def _forward_cell(self, cell_input, prev_hidden_states):
def _forward_layer(inputs, dcgru_layer, hidden_state): """
# inputs shape = (timesteps, batch_size, input_size) Runs for 1 time step through all layers.
outputs = [] :param cell_input: shape (batch_size, input feature size)
for cell_input in inputs[:, ]: :param prev_hidden_states: (num_layers, batch_size, hidden size)
hidden_state = dcgru_layer(cell_input, hidden_state) :return: output of cell: shape(batch_size, hidden size)
outputs.append(hidden_state) all hidden states from layer: shape(num_layers, batch_size, hidden size)
"""
hidden_states = []
output = cell_input
for layer_num, dcgru_layer in enumerate(self.dcgru_layers):
hidden_state = dcgru_layer(output, prev_hidden_states[layer_num])
hidden_states.append(hidden_state)
output = hidden_state
return torch.cat(outputs, dim=1) # runs in O(timesteps) not too slow return output, torch.cat(hidden_states, dim=1) # runs in O(num_layers) so not too slow #todo: check dim
def _forward_impl(self, inputs, hidden_state): def _forward_impl(self, inputs, hidden_state):
""" """
forward pass. forward pass.
:param inputs: shape (batch_size, timesteps, num_nodes * input_dim) :param inputs: shape (batch_size, timesteps, input_size)
:param hidden_state: (num_layers, batch_size, self.hidden_state_size) -> optional, zeros if not provided :param hidden_state: (num_layers, batch_size, self.hidden_state_size) -> optional, zeros if not provided
:return: output: # shape (timesteps, batch_size, self.hidden_state_size) :return: output: # shape (timesteps, batch_size, self.hidden_state_size)
hidden_state # shape (num_layers, batch_size, self.hidden_state_size) (lower indices mean lower layers) hidden_state # shape (num_layers, batch_size, self.hidden_state_size) (lower indices mean lower layers)
""" """
layer_input = inputs.permute(1, 0, 2) # first axis is now timesteps batch_size, timesteps, _ = inputs.size()
if hidden_state is None: if hidden_state is None:
batch_size = inputs.size()[0]
hidden_state = torch.zeros((self.num_rnn_layers, batch_size, self.hidden_state_size), hidden_state = torch.zeros((self.num_rnn_layers, batch_size, self.hidden_state_size),
device=device) device=device)
hidden = torch.empty_like(hidden_state) output = torch.empty((timesteps, batch_size, self.hidden_state_size))
# noinspection PyTypeChecker for t in range(timesteps):
for layer_num, dcgru_layer in enumerate(self.dcgru_layers): hidden_state = self.t_step_forward_pass(hidden_state, inputs, output, t)
layer_states = self._forward_layer(layer_input, dcgru_layer, hidden_state[layer_num])
# append last time step's hidden state
hidden[layer_num] = layer_states[-1]
layer_input = layer_states
output = layer_input # last layer's output output = output.permute(1, 0, 2)
return output, hidden return output, hidden_state
@abstractmethod
def t_step_forward_pass(self, hidden_state, inputs, output, t):
"""
Implements the forward pass for timestep t.
"""
# this is to accommodate curriculum learning
pass
class EncoderModel(nn.Module, DCRNNModel): class EncoderModel(nn.Module, DCRNNModel):
@ -67,6 +78,12 @@ class EncoderModel(nn.Module, DCRNNModel):
# https://pytorch.org/docs/stable/nn.html#gru # https://pytorch.org/docs/stable/nn.html#gru
self.seq_len = int(model_kwargs.get('seq_len')) # for the encoder self.seq_len = int(model_kwargs.get('seq_len')) # for the encoder
def t_step_forward_pass(self, hidden_state, inputs, output, t):
cell_input = inputs[:, t, :] # (batch_size, input_size)
cell_output, hidden_state = self._forward_cell(cell_input, hidden_state)
output[t] = cell_output
return hidden_state
def dcgru_layers(self): def dcgru_layers(self):
# input shape is supposed to be Input (batch_size, timesteps, num_sensor*input_dim) # input shape is supposed to be Input (batch_size, timesteps, num_sensor*input_dim)
# first layer takes input shape and subsequent layer take input from the first layer # first layer takes input shape and subsequent layer take input from the first layer