Commit Graph

52 Commits

Author SHA1 Message Date
Chintan Shah d2913fd6f1 converting to CPU 2019-10-08 13:09:02 -04:00
Chintan Shah dda7013f07 returning predictions from the model during eval at every timestep 2019-10-08 12:56:20 -04:00
Chintan Shah 46b552e075 updated eps value 2019-10-08 02:44:13 -04:00
Chintan Shah 02fb2430f0 removed logging of every horizon 2019-10-08 02:10:59 -04:00
Chintan Shah 765142de00 refactored 2019-10-07 20:55:26 -04:00
Chintan Shah 5d7694e293 logging to 4 decimals 2019-10-07 20:54:58 -04:00
Chintan Shah f6e6713f74 fixed range bug 2019-10-07 20:40:54 -04:00
Chintan Shah 2560e1d954 Added per timestep loss 2019-10-07 20:03:00 -04:00
Chintan Shah 3d93008a3e improved saving and restoring of model 2019-10-07 11:56:14 -04:00
Chintan Shah a5a1063160 fixed docstring 2019-10-07 10:48:48 -04:00
Chintan Shah 5509e9aae5 Ensured all parameters are added to the optimizer 2019-10-07 09:47:38 -04:00
Chintan Shah de42a67391 added logging statement 2019-10-07 07:59:41 -04:00
Chintan Shah 941675d6a7 Added kwargs 2019-10-06 18:57:13 -04:00
Chintan Shah 96d8dc4417 handling nans in loss tensor 2019-10-06 18:55:35 -04:00
Chintan Shah 5dd0f1dd3a implemented masked mae loss, added tensorflow writer, changed % logic 2019-10-06 18:08:13 -04:00
Chintan Shah a8814d5d93 Added docstrings 2019-10-06 17:12:06 -04:00
Chintan Shah 9fb999c3bb squash! Added dcrnn_cell 2019-10-06 17:01:49 -04:00
Chintan Shah d1964672c2 Added dcrnn_cell
Rough implementation complete - could forward pass it through the network

Ensured sparse mm for readability, logging sparsely as well

moving tensors to GPU

moving tensors to GPU [v2]

moving tensors to GPU [v3]

logging and refactor

logging and refactor

logging and refactor

logging and refactor

logging and refactor

logging and refactor

logging and refactor

ensured row major ordering

fixed log message
2019-10-06 17:00:23 -04:00
Chintan Shah b65df994e4 Added dcrnn_cell 2019-10-06 11:55:02 -04:00
Chintan Shah e80c47390d Merge branch 'pytorch_implementation' into pytorch_scratch 2019-10-06 11:49:49 -04:00
Chintan Shah 5a790d5586 cuda no grad 2019-10-04 23:30:10 -04:00
Chintan Shah 593e3db1bf Using model.cuda() if cuda is available 2019-10-04 22:45:08 -04:00
Chintan Shah 8d3b1d0d66 Implemented lr annealing schedule 2019-10-04 21:18:05 -04:00
Chintan Shah ba880b8230 Implementing load and save models and early stopping 2019-10-04 17:25:03 -04:00
Chintan Shah d9f41172dc Implemented eval and function 2019-10-04 17:07:38 -04:00
Chintan Shah 20c6aa5862 Fixed bugs with refactoring 2019-10-04 16:05:52 -04:00
Chintan Shah 2b8d5e6b31 Refactored code and moved everything into a DCRNN forward pass 2019-10-04 13:02:50 -04:00
Chintan Shah f41dc442b0 Implemented gradient clipping and returning output from training one batch 2019-10-03 19:35:54 -04:00
Chintan Shah 9834b12d5a Cleaned up code, fixed bugs in implementation, seems like it starts training with GRU 2019-10-02 22:20:43 -04:00
Chintan Shah f96a8c0d59 Dirty commit - setup model but [GRUCell] not working, tried ParameterList, did not work 2019-10-02 18:09:33 -04:00
Chintan Shah c876cbfba3 Setup training loop and logging 2019-10-02 17:34:07 -04:00
Chintan Shah 86c4c5704d Implemented single batch forward pass 2019-10-01 22:47:59 -04:00
Chintan Shah 69288460b1 Simplified encoder decoder model and moved curriculum learning outside 2019-10-01 10:07:34 -04:00
Chintan Shah a1c9af2bad Setup curriculum learning framework 2019-09-30 21:58:55 -04:00
Chintan Shah bdce241a8f Implemented abstract method and changed scheme to do all layers first for each timestep 2019-09-30 20:32:31 -04:00
Chintan Shah 0769a3b2e2 Implemented seq2seq without DCGRU and curriculum learning 2019-09-30 19:14:24 -04:00
Chintan Shah 7349f2ed67 Figured out decoder shapes 2019-09-30 16:04:03 -04:00
Chintan Shah 6386ac7eb4 Implemented encoder using GRUCell instead so that it's easier to swap that with DCGRUCell 2019-09-29 17:40:52 -04:00
Chintan Shah 66fb202d21 Implemented Encoder with GRU - should swap GRU with DCGRU 2019-09-29 12:51:49 -04:00
Chintan Shah 7a5e3c0216 model partially implemented - does not work yet 2019-09-29 11:13:08 -04:00
Chintan Shah adbfa19146 Implemented DCGRUCell in pytorch (untested) 2019-09-08 19:28:20 -04:00
Chintan Shah 00c70b3a27 Implemented fc layer and changed docker image to use pytorch 2019-09-08 18:47:19 -04:00
Chintan Shah 7ba7fa320d Using pytorch image 2019-09-07 17:53:46 -04:00
Yaguang 81b4626193 Remove unused code. 2019-01-18 19:00:34 -08:00
Yaguang d59d44e4f0 Code refactor. 2018-10-01 17:45:46 -07:00
Yaguang 7e05414d99 Combine Val and Test model. 2018-09-30 22:14:45 -07:00
Yaguang 5dc36fed7c Refactor DCRNN Model. 2018-09-30 21:53:40 -07:00
Yaguang e8d6c08db0 Merge log_helper into utils and change logging mechanism. 2018-09-26 11:33:21 -07:00
Yaguang 9ec161543b Code refactoring, including data loading, logging, configuration, removing redundant code. 2018-09-26 11:19:00 -07:00
Yaguang e08002d72d Update the seq2seq training logic. 2018-06-07 11:16:33 +08:00