-
d92490b808
Moved comparison to the top
main
Chintan Shah
2019-11-03 20:17:58 -0500
-
a3b76a56c6
Added PyTorch vs TF MAE comparison
Chintan Shah
2019-11-03 20:14:40 -0500
-
bb32eb0f46
Changed README to reflect PyTorch implementation
Chintan Shah
2019-10-30 12:30:45 -0400
-
073f1d4a6e
updated epeoch num
Chintan Shah
2019-10-08 17:32:16 -0400
-
b2d2b21dbd
logging MAE
Chintan Shah
2019-10-08 13:46:34 -0400
-
f720529ac9
demoing with test data
Chintan Shah
2019-10-08 13:11:43 -0400
-
d2913fd6f1
converting to CPU
Chintan Shah
2019-10-08 13:09:02 -0400
-
f92e7295a0
added run_demo_pytorch
Chintan Shah
2019-10-08 13:05:49 -0400
-
dda7013f07
returning predictions from the model during eval at every timestep
Chintan Shah
2019-10-08 12:56:20 -0400
-
46b552e075
updated eps value
Chintan Shah
2019-10-08 02:44:13 -0400
-
02fb2430f0
removed logging of every horizon
Chintan Shah
2019-10-08 02:10:59 -0400
-
765142de00
refactored
Chintan Shah
2019-10-07 20:55:26 -0400
-
5d7694e293
logging to 4 decimals
Chintan Shah
2019-10-07 20:54:58 -0400
-
f6e6713f74
fixed range bug
Chintan Shah
2019-10-07 20:40:54 -0400
-
2560e1d954
Added per timestep loss
Chintan Shah
2019-10-07 20:03:00 -0400
-
3d93008a3e
improved saving and restoring of model
Chintan Shah
2019-10-07 11:56:14 -0400
-
a5a1063160
fixed docstring
Chintan Shah
2019-10-07 10:48:48 -0400
-
5509e9aae5
Ensured all parameters are added to the optimizer
Chintan Shah
2019-10-07 09:47:38 -0400
-
de42a67391
added logging statement
Chintan Shah
2019-10-07 07:59:41 -0400
-
941675d6a7
Added kwargs
Chintan Shah
2019-10-06 18:57:13 -0400
-
96d8dc4417
handling nans in loss tensor
Chintan Shah
2019-10-06 18:55:35 -0400
-
5dd0f1dd3a
implemented masked mae loss, added tensorflow writer, changed % logic
Chintan Shah
2019-10-06 18:08:13 -0400
-
a8814d5d93
Added docstrings
Chintan Shah
2019-10-06 17:12:06 -0400
-
ad8ac8ff2f
Merge branch 'pytorch_integration' into pytorch_scratch
Chintan Shah
2019-10-06 17:07:54 -0400
-
-
5b93f3c778
Merge branch 'pytorch_integration' of github.com:chnsh/DCRNN into pytorch_integration
Chintan Shah
2019-10-06 17:02:35 -0400
-
-
9fb999c3bb
squash! Added dcrnn_cell
Chintan Shah
2019-10-06 17:01:49 -0400
-
-
d1964672c2
Added dcrnn_cell
Chintan Shah
2019-10-06 11:55:02 -0400
-
d46b605a65
ensured row major ordering
Chintan Shah
2019-10-06 15:53:14 -0400
-
6331173f44
logging and refactor
Chintan Shah
2019-10-06 15:22:57 -0400
-
ec5d9555a5
logging and refactor
Chintan Shah
2019-10-06 15:15:11 -0400
-
55a087ac9f
logging and refactor
Chintan Shah
2019-10-06 14:40:53 -0400
-
02c4681ad9
logging and refactor
Chintan Shah
2019-10-06 14:38:44 -0400
-
b6a2b3fe8e
logging and refactor
Chintan Shah
2019-10-06 14:34:58 -0400
-
036e552bf6
logging and refactor
Chintan Shah
2019-10-06 14:31:46 -0400
-
31acadedce
logging and refactor
Chintan Shah
2019-10-06 14:29:28 -0400
-
e563e1bf37
moving tensors to GPU [v3]
Chintan Shah
2019-10-06 14:13:02 -0400
-
017ec70783
moving tensors to GPU [v2]
Chintan Shah
2019-10-06 14:10:20 -0400
-
ba304e9f04
moving tensors to GPU
Chintan Shah
2019-10-06 14:00:54 -0400
-
9454fd91a2
Ensured sparse mm for readability, logging sparsely as well
Chintan Shah
2019-10-06 13:44:55 -0400
-
2e1836df40
Rough implementation complete - could forward pass it through the network
Chintan Shah
2019-10-06 13:24:37 -0400
-
-
-
b65df994e4
Added dcrnn_cell
Chintan Shah
2019-10-06 11:55:02 -0400
-
-
e80c47390d
Merge branch 'pytorch_implementation' into pytorch_scratch
Chintan Shah
2019-10-06 11:49:49 -0400
-
-
5a790d5586
cuda no grad
Chintan Shah
2019-10-04 23:30:10 -0400
-
593e3db1bf
Using model.cuda() if cuda is available
Chintan Shah
2019-10-04 22:45:08 -0400
-
8d3b1d0d66
Implemented lr annealing schedule
Chintan Shah
2019-10-04 21:18:05 -0400
-
ba880b8230
Implementing load and save models and early stopping
Chintan Shah
2019-10-04 17:25:03 -0400
-
d9f41172dc
Implemented eval and function
Chintan Shah
2019-10-04 17:07:38 -0400
-
20c6aa5862
Fixed bugs with refactoring
Chintan Shah
2019-10-04 16:05:52 -0400
-
2b8d5e6b31
Refactored code and moved everything into a DCRNN forward pass
Chintan Shah
2019-10-04 13:02:50 -0400
-
f41dc442b0
Implemented gradient clipping and returning output from training one batch
Chintan Shah
2019-10-03 19:35:54 -0400
-
9834b12d5a
Cleaned up code, fixed bugs in implementation, seems like it starts training with GRU
Chintan Shah
2019-10-02 22:20:43 -0400
-
f96a8c0d59
Dirty commit - setup model but [GRUCell] not working, tried ParameterList, did not work
Chintan Shah
2019-10-02 18:09:33 -0400
-
c876cbfba3
Setup training loop and logging
Chintan Shah
2019-10-02 17:34:07 -0400
-
86c4c5704d
Implemented single batch forward pass
Chintan Shah
2019-10-01 22:47:59 -0400
-
69288460b1
Simplified encoder decoder model and moved curriculum learning outside
Chintan Shah
2019-10-01 10:07:34 -0400
-
a1c9af2bad
Setup curriculum learning framework
Chintan Shah
2019-09-30 21:58:55 -0400
-
bdce241a8f
Implemented abstract method and changed scheme to do all layers first for each timestep
Chintan Shah
2019-09-30 20:32:31 -0400
-
0769a3b2e2
Implemented seq2seq without DCGRU and curriculum learning
Chintan Shah
2019-09-30 19:14:24 -0400
-
7349f2ed67
Figured out decoder shapes
Chintan Shah
2019-09-30 16:04:03 -0400
-
6386ac7eb4
Implemented encoder using GRUCell instead so that it's easier to swap that with DCGRUCell
Chintan Shah
2019-09-29 17:40:52 -0400
-
66fb202d21
Implemented Encoder with GRU - should swap GRU with DCGRU
Chintan Shah
2019-09-29 12:51:49 -0400
-
7a5e3c0216
model partially implemented - does not work yet
Chintan Shah
2019-09-29 11:13:08 -0400
-
adbfa19146
Implemented DCGRUCell in pytorch (untested)
Chintan Shah
2019-09-08 19:28:20 -0400
-
00c70b3a27
Implemented fc layer and changed docker image to use pytorch
Chintan Shah
2019-09-08 18:47:19 -0400
-
7ba7fa320d
Using pytorch image
Chintan Shah
2019-09-07 17:53:46 -0400
-
-
69d6c0e053
Add Dockerfile
Chintan Shah
2019-09-07 17:18:31 -0400
-
8c20ca1a9c
Adds baseline methods for evaluation.
Yaguang
2019-06-18 13:00:24 -0700
-
37f0734cb4
Update README.md
Yaguang
2019-03-18 21:32:57 -0700
-
3caf887484
Add data example.
Yaguang
2019-03-17 11:56:55 -0700
-
4344dddc6d
Add instructions on using HDF5 with python.
Yaguang
2019-03-17 11:43:30 -0700
-
81b4626193
Remove unused code.
Yaguang
2019-01-18 19:00:34 -0800
-
734ecbc138
Update README.md
Yaguang
2019-01-12 12:04:28 -0800
-
763eb7af69
Add pretrained model on PEMS-BAY.
Yaguang
2019-01-10 17:44:07 -0800
-
ad36deb794
Update README.md
Yaguang
2019-01-08 11:33:20 -0800
-
c8a676604b
Add PEMS-BAY configuration.
liyaguang
2019-01-08 11:21:22 -0800
-
1481b24b1b
Update README.md
Yaguang
2018-12-24 00:47:17 -0800
-
ac5321fcf7
Update README.md
Yaguang
2018-11-03 11:54:22 -0700
-
a8aa1732a9
Update README.md
Yaguang
2018-10-12 13:30:53 -0700
-
d59d44e4f0
Code refactor.
Yaguang
2018-10-01 17:45:46 -0700
-
bbc06b6c0c
Add log level support and load_dataset method.
Yaguang
2018-10-01 17:45:28 -0700
-
88d9fc86d1
Update instructions for graph generation.
Yaguang
2018-10-01 10:54:56 -0700
-
e6645df191
Update README.
Yaguang
2018-10-01 09:59:47 -0700
-
2e4b8c868f
Merge pull request #9 from liyaguang/v2
Yaguang
2018-10-01 09:56:22 -0700
-
-
9520e6cf85
Update pretrained model.
Yaguang
2018-10-01 09:47:23 -0700
-
e0212cc178
Update README and requirements.
Yaguang
2018-09-30 22:15:27 -0700
-
7e05414d99
Combine Val and Test model.
Yaguang
2018-09-30 22:14:45 -0700
-
5dc36fed7c
Refactor DCRNN Model.
Yaguang
2018-09-30 21:53:40 -0700
-
2f2d748b45
Add AMSGrad from https://github.com/taki0112/AMSGrad-Tensorflow for stablized Adam Training.
Yaguang
2018-09-30 21:52:20 -0700
-
e8d6c08db0
Merge log_helper into utils and change logging mechanism.
Yaguang
2018-09-26 11:33:21 -0700
-
9ec161543b
Code refactoring, including data loading, logging, configuration, removing redundant code.
Yaguang
2018-09-26 11:19:00 -0700
-
-
80e156c580
Update README.md
Yaguang
2018-07-22 18:55:35 +0800
-
67bd763b18
Update README.md
Yaguang
2018-07-22 18:53:50 +0800
-
17927239a7
Update the pretrained model and results.
Yaguang
2018-06-07 11:18:55 +0800
-
e08002d72d
Update the seq2seq training logic.
Yaguang
2018-06-07 11:16:33 +0800
-
562514cc30
Add a more data-efficient training data generation method.
Yaguang
2018-06-07 10:41:47 +0800
-
e93435c598
Replace json with yaml for configuration.
Yaguang
2018-04-18 11:51:35 -0700
-
3e94a0ff0e
Adds support for python 3.5 and python 3.6.
Yaguang
2018-04-18 11:50:39 -0700
-
fcdf62d6de
Update reference.
Yaguang
2018-03-30 13:42:12 -0700
-
90e39f5a4a
Update README to include the lat/lon file.
Yaguang
2018-03-29 17:58:52 -0700
-
82922c8308
Adds the file containing sensor lat/lon.
Yaguang
2018-03-29 17:48:51 -0700